메뉴 바로가기 검색 및 카테고리 바로가기 본문 바로가기

한빛출판네트워크

제대로 배우는 수학적 최적화

최적화 모델링부터 알고리즘까지

한빛미디어

번역서

판매중

  • 저자 : 우메타니 슌지
  • 번역 : 김모세
  • 출간 : 2021-09-30
  • 페이지 : 424 쪽
  • ISBN : 9791162244661
  • 물류코드 :10466
초급 초중급 중급 중고급 고급
4.8점 (4명)
좋아요 : 1

수학적 최적화 기본 지식을 배우기 위한 최적의 입문서

 

이 책은 수학적 최적화라는 사고방식의 기초를 확실히 다지기 위해 최적화 문제로 모델링하는 법과 기본적인 최적화 알고리즘을 다룬다. 또한 이해를 돕기 위해 떠올리기 쉬운 구체적인 사례와 연습 문제가 수록되어 있다.

 

 

이 책의 구성


1장_수학적 최적화 입문

수학적 최적화는 주어진 제약조건하에서 목적 함숫값을 최소(또는 최대)로 하는 설루션을 구하는 최적화 문제를 말하며, 현실 사회의 의사결정이나 문제를 해결하는 수단입니다. 1장에서는 예시와 함께 수학적 최적화의 개요에 대해 설명합니다.

 

2장_선형 계획

선형 계획 문제는 가장 기본적인 최적화 문제로, 대규모의 문제 사례를 현실적인 계산 수단으로 푸는 효과적인 알고리즘이 개발되어 있습니다. 선형 계획 문제의 정식화, 선형 계획 문제의 대표적인 알고리즘인 단체법에 대해 알아보고, 수학적 최적화에서 가장 중요한 개념인 쌍대 문제와 완화 문제를 설명합니다.

 

3장_비선형 계획

비선형 계획 문제는 적용 범위가 매우 넓기 때문에, 다채로운 비선형 계획 문제를 효율적으로 푸는 범용적인 알고리즘 개발은 어렵습니다. 비선형 계획 문제의 정식화, 효율적으로 풀 수 있는 비선형 계획 문제의 특징을 설명한 뒤 제약이 없는 최적화 문제와 제약이 있는 최적화 문제의 대표적인 알고리즘을 설명합니다.

 

4장_정수 계획과 조합 최적화 문제

선형 계획 문제에서 변수가 정숫값만 갖는 정수 계획 문제는 산업이나 학술 등 폭넓은 분야에서 현실 문제를 정식화할 수 있는 범용적인 최적화 문제 중 하나입니다. 정수 계획 문제의 정식화, 조합 최적화 문제의 어려움을 평가하는 계산 복잡성 이론의 기본적인 사고방식에 대해 알아봅니다. 또한 몇 가지 특수한 정수 계획 문제의 효율적인 알고리즘과 정수 계획 문제의 대표적인 알고리즘인 분기 한정법과 절제 평면법을 설명한 뒤, 임의의 문제를 예로 들어 근사 성능을 보증하며 실행 가능한 설루션을 구하는 근사 알고리즘과 많은 문제 사례에 대해 고품질의 실행 가능한 설루션을 구할 수 있는 국소 탐색 알고리즘 및 메타 휴리스틱에 대해 설명합니다.

 

 

대상 독자

  • 최적화 이론에 관심 있는 학생과 연구원 및 수학적 최적화와 관련 업무에 종사하는 실무자
  • 수학 관련 전공자가 아니더라도 인공지능 분야나 기타 여러 산업 분야에서 최적화 알고리즘 적용에 대한 공부를 하고 싶은 독자 

 

저자

우메타니 슌지

1974년생. 정보학 박사. 2002년 교토대학 대학원 정보학 연구과 박사 후기 과정을 수료한 뒤 연구 지도 인정을 받고 자퇴하였다. 현재 오사카대학 대학원 정보과 수학적 최적화 기부 강좌 교수이며 수학적 최적화와 알고리즘 운영 부문에 종사하고 있다. 특히 규모가 크면서 계산이 난해한 조합 최적화 문제에 대한 실용적 알고리즘 개발, 수학적 최적화 모델 및 알고리즘 구현 문제가 주요 연구 분야다.

역자

김모세

대학 졸업 후 소프트웨어 엔지니어, 소프트웨어 품질 엔지니어, 애자일 코치 등 다양한 부문에서 소프트웨어 개발에 참여했다. 스스로를 끊임없이 변화시키고 새로운 지식을 전달하기 위해 번역을 시작했다.

Chapter 1 수학적 최적화 입문

1.1 수학적 최적화란

1.2 최적화 문제

1.3 대표적인 최적화 문제

1.4 이 책의 구성

1.5 정리


Chapter 2 선형 계획

2.1 선형 계획 문제의 정식화

2.2 단체법

2.3 완화 문제와 쌍대 정리

2.4 정리

 

Chapter 3 비선형 계획

3.1 비선형 계획 문제의 정식화

3.2 제약이 없는 최적화 문제

3.3 제약이 있는 최적화 문제

3.4 정리

 

Chapter 4 정수 계획과 조합 최적화

4.1 정수 계획 문제의 정식화

4.2 알고리즘 성능과 문제의 난이도 평가

4.3 효율적으로 해결하는 조합 최적화 문제

4.4 분기 한정법과 절제 평면법

4.5 근사 알고리즘

4.6 국소 탐색 알고리즘

4.7 메타 휴리스틱

4.8 정리

수학적 최적화는 현실 속의 문제를 합리적으로 해결하는 방법 중 하나입니다. 수학적 최적화를 빠르게 이해하기 위해서는 문제를 최적화하기 위한 모델링 방법을 익히고 효율적인 알고리즘이 적용된 최적화 문제를 살펴봐야 합니다. 이 책은 수학적 최적화라는 사고방식의 기초를 확실히 다지기 위해 최적화 문제로 모델링하는 법과 기본적인 최적화 알고리즘을 다룹니다. 또한 이해를 돕기 위해 떠올리기 쉬운 구체적인 사례와 연습 문제가 수록되어 있습니다. 

 

 

추천사

 

“수학적 최적화 문제 해결을 위한 책이다. 직면한 문제를 해결하려면 먼저 모델링하여 적절한 최적화 방법을 적용하는 절차를 밟아야 한다. 이 책은 풍부한 실제 사례를 통해 모델링의 핵심을 설명하고 다양한 최적화 기법을 알기 쉽게 해설하고 있다. 최적화 분야 전반을 알기 위한 최적의 설루션으로 추천하고 싶다.”

_이바라키 도시히데_교토대학 정보대학원 학장

  •  


    1장_수학적 최적화 입문


    수학적 최적화는 주어진 제약조건하에서 목적 함숫값을 최소(또는 최대)로 하는 설루션을 구하는 최적화 문제를 말하며, 현실 사회의 의사결정이나 문제를 해결하는 수단입니다. 1장에서는 예시와 함께 수학적 최적화의 개요에 대해 설명합니다.


    2장_선형 계획


    선형 계획 문제는 가장 기본적인 최적화 문제로, 대규모의 문제 사례를 현실적인 계산 수단으로 푸는 효과적인 알고리즘이 개발되어 있습니다. 선형 계획 문제의 정식화, 선형 계획 문제의 대표적인 알고리즘인 단체법에 대해 알아보고, 수학적 최적화에서 가장 중요한 개념인 쌍대 문제와 완화 문제를 설명합니다.


    3장_비선형 계획


    비선형 계획 문제는 적용 범위가 매우 넓기 때문에, 다채로운 비선형 계획 문제를 효율적으로 푸는 범용적인 알고리즘 개발은 어렵습니다. 비선형 계획 문제의 정식화, 효율적으로 풀 수 있는 비선형 계획 문제의 특징을 설명한 뒤 제약이 없는 최적화 문제와 제약이 있는 최적화 문제의 대표적인 알고리즘을 설명합니다.


    4장_정수 계획과 조합 최적화 문제


    선형 계획 문제에서 변수가 정숫값만 갖는 정수 계획 문제는 산업이나 학술 등 폭넓은 분야에서 현실 문제를 정식화할 수 있는 범용적인 최적화 문제 중 하나입니다. 정수 계획 문제의 정식화, 조합 최적화 문제의 어려움을 평가하는 계산 복잡성 이론의 기본적인 사고방식에 대해 알아봅니다. 또한 몇 가지 특수한 정수 계획 문제의 효율적인 알고리즘과 정수 계획 문제의 대표적인 알고리즘인 분기 한정법과 절제 평면법을 설명한 뒤, 임의의 문제를 예로 들어 근사 성능을 보증하며 실행 가능한 설루션을 구하는 근사 알고리즘과 많은 문제 사례에 대해 고품질의 실행 가능한 설루션을 구할 수 있는 국소 탐색 알고리즘 및 메타 휴리스틱에 대해 설명합니다. 


    [대상 독자]

    - 최적화 이론에 관심 있는 학생과 연구원 및 수학적 최적화와 관련 업무에 종사하는 실무자

    - 수학 관련 전공자가 아니더라도 인공지능 분야나 기타 여러 산업 분야에서 최적화 알고리즘 적용에 대한 공부를 하고 싶은 독자


    [서평]

    우메타니 슌지의 “しっかり学ぶ数理最適化 モデルからアルゴリズムまで (KS情報科学専門書)”작품을 김모세님 께서 번역한 책(제대로 배우는 수학적 최적화)이다. 


    단체법(심플렉스 법)을 이용한 해법에 대해서 구체적 예를 제시하고 일반적인 솔루션을 위한 방법은 쉽고 좋습니다. 상호 문제, 완화 문제에 대해서 라그랑주 완화 문제 진행도 자연스럽습니다. 


    별 1개를 뺀 이유 대해서 말하겠습니다. “기본적으로는 좋은 책이라는 전제”입니다.


    이책에서는 각 이슈가 예를들어 "이를 XXX이라 한다"라고 말했을 때의 참조 대상이 구체적인 예가 되는 것이 많이 있습니다.(예를 들면 p48의 "여유 변수"는 구체적인 예의 x3, x4, x5를 가리키고 있습니다. 이 직후의 기본 변수 및 해당 변수에 대해서도 정의와 의미 설명이 부족합니다.)


    물론 분위기는 알고, 유추할 수도 있습니다. 그러나 수학 서적으로, 이런 용어의 도입과 사용은 이해가 더 희미하게 되므로 어렵다라고 생각합니다.


    하지만, 적어도 수학적 최적화만으로도 책을 살 의미가 있다고 생각합니다.

    알고리즘과 데이터 구조, 미적분, 선형대수의 선행 지식이 어느 정도 있어야 내용을 이해 할수 있습니다. 이 책에서 알고리즘과 수학적 최적화 모델 및 구현 문제에 대해서 어떻게 해결 해야 하는지 배울수 있습니다. 책의 내용을 완전히 이해하고 연습문제를 풀수 있는 수준까지 된다면 현업에서 해결 해야 할 수학적 모델 최적화를 적용하는데 크게 어려움이 없을것이라 생각합니다.

     

     "한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

  • 이 책은 일본교토대학 박사후 과정을 수료한 우메타니가 지은 책이다. 최근에라고 표현하기도 뭐할 정도가 되었지만 머신러닝&딥러닝 AI가 핫하다. 머신러닝&딥러닝과 연관성이 있는 주제가 최적화이다. 그리고 코딩테스트에 알고리즘을 묻는 회사들이 많은 데 그래프이론 등에서 알고리즘 최적화가 관련이 있다. 굳이 비유를 하자면 더하기와 곱하기의 관계 또는  곱하기연산과 shift연산 정도의 관계로 이해할 수 있다. 

     

      이 책의 장점은 기초적인 내용을 방대하게 다루고 있다. 기초라고 하지만 읽다보면 수면제 대용으로 쓰기 적당할 정도의 난이도가 있다. 천천히 읽으면 쉽지만 빠르게 읽으면 무슨소리인지 모를 수준이다. 또 다른 장점은 실생활에 또는 산업계에 실제로 있을 만한 문제들에 대한 예시가 한글로 친절하게 자세히 번역되어 굉장히 많이 언급되고  정리 복습 및 연습문제와 참고자료가 친절하게 있다.

     

      이 책의 단점은 기본 선형대수를 모르면 읽기가 어렵고 일본어로 되어 있는 책을 번역하다보니 일본식 표기법(솔루션-->설루션, ??? --> 생,  방향성이 있는 --> 유향 or 유행, 근원 --> 기저, 음수가 아닌 --> 비부, 규제화 --> 정칙화, 공식화 --> 정식화...)이라 약간 어색하고 참고자료에 소개된 자료가 일본어 책이 많고 책이 얇지 않아 들고 다니기가 약간 부담이 된다. 

     

      이 책을 읽기 전에 필요한 선수지식은 수학기호와 선형대수와 유명한 수학 용어 & 정리 (예를 들면 라그랑주, 헤시안 행렬 ...) 등이고 경영학이나 경제학 등을 알고 있으면 책을 더 재미있게 읽을 수 있다.

     

      대학교 기초 교재로 활용하면 좋을 만한 책인데 약간 아쉬운 점은 실습용코드가 없다는 점과 너무 많은 이론들에 대한 절대진리표 같은 최종 정리가 있으면  좋겠다

     

     

    "한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

  • 이 책은 알고리즘과 데이터 구조, 미적분, 선형대수의 기본적인 지식을 전제로 한다

     

    기본적인 지식이 갖춰져 있지 않다면 이 책을 읽을 수는 있으나 이해하기가 매우 힘들 수 있다

     

    이 책은 기본적인 지식이 갖춰져 있는 대상자들을 전제로 계산이 난해한 조합이나 최적화 문제에 대한 실용적인 알고리즘 개발, 수학적 최적화 모델 및 알고리즘 구현 문제에 대해 연구하고 있는 사람들에게 매우 큰 깨달음을 줄 수 있는 책이다

     

    책의 내용은 반복적으로 학습하는 것을 권장하고 있으니 이 책에서 권장하는 학습 순서대로 반복해서 학습해보기를 권장한다

     

    이 책은 총 네가지의 챕터로 구성되어 있다

     

    수학적 최적화 입문, 선형 계획, 비선형 계획, 정수 계획과 조합 최적화

     

    이 네가지 챕터에서 알고리즘과 최적화 기법에 대해 심도있게 다루고 있으며 깊이 있게 생각 해보면서 책의 내용을 이해하고 연습문제를 풀이 해본다면 수학적 최적화 기법에 익숙해져 실무에서 충분히 활용해볼 수 있을 것 같다

     

     

    최적화 모델링부터 알고리즘까지 심도있는 내용을 다루고 있으므로 이러한 지식이 필요한 사람들이라면 이 책을 꼭 한번 읽어보기를 권장한다

  •  

     

    이 책은 경영, 경제, 공업수학등에서 배우는 최적화 문제와 관련된 이야기를 다루고 있는데 저자인 우메타니 슌지는 1974년생 정보학 박사로 정보학을 전공하였으며 현재 오사카대학 대학원에서 수학적 최적화 교수로 있으며 수학적 최적화와 알고리즘 운영에 대해 주 관심을 가지고 종사하고 있다 한다.

     

    내용은 전체적으로 미국식 수학기호 나열과 난해한 수식으로 꽉채워진 책이 아니라 우리가 고등학교때 많이, 쉽게 보아온 수학정석 스타일로 서술되어 있어 친숙하고 감성적인 느낌이 드는 책이다.

     

    책은 총 3파트로 1파트 선형계획, 2파트 비선형계획, 3파트 정수계획과 조합최적화로 구성되어 있는데 1파트에선 일반적인 제약조건하 최소, 최대값을 구하기 위한 선형계획법을 시작으로 단체법, 완화 문제, 쌍대정리를 다루고 있다.

     

    2파트에선 비선형 계획중 제약이 없는 최적화 문제와 관련 딥러닝 이해에 필요한 경사하강법, 뉴턴법, 준뉴턴법등을 설명하고 있으며 제약이 있는 최적화문제로 유효 제약법, 페널티 함수법과 배리어 함수법, 확장 라그랑주 함수법을 다루고 있다.

     

    3파트에선 정수계획과 조합 최적화를 주제로 하고 있는데 정수계획에 대한 개념 설명을 시작으로 정수계획문제, 컴퓨터 과학분야에서 주로 배웠던 알고리즘 계산과 복잡도평가, 문제 난이도와 NP, 탐욕 알고리즘, 동적 계획법, 분기 한정법, 절제 평면법, 근사 알고리즘, 국소 탐색 알고리즘, 메타 휴리스틱등을 다룬다.

     

    전체적으로 책을 훑어 본 느낌은 초중급자부터 중급자들이 보기에 좋은 내용으로 보이며 책의 서술이 미국이나 유럽의 저자들이 서술한 책보다 일본, 한국 수학책 느낌을 받게되어 본능적으로 어렵고 꺼리게 되는 수학에 대한 거부감을 줄여주는데 조금이나마 기여를 하는듯 싶다.

     

    다만, 한가지 아쉬운 점은 책 내용 중 수학적 내용을 컴퓨터로 응용해 볼 수 있는 매트랩, 파이썬등의 예제까지 확장 서술되지 않고 이론 수학을 중점으로 다루고 있어 향후 저자가 본 책을 중심으로 컴퓨터 응용 서적을 저술하면 어떨까 하는 생각이다.

     

    어차피 학문 길 특히 수학에는 왕도가 없으므로 무한정 저자의 저술을 기다리기 보다 독자 스스로 시간이 좀 걸리더라도 거북이처럼 엉금엉금 컴퓨테이션을 통해 이론을 컴퓨터화로 실행 하면서 한단계씩 원하는 목적에 다가가는게 아름다운 모습일 것 같다.

     

    "한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

     

결제하기
• 문화비 소득공제 가능

배송료 안내

  • 책, 아이템 등 상품을 1만원 이상 구매시 무료배송
  • 브론즈, 실버, 골드회원이 주문하신 경우 무료배송

무료배송 상품을 포함하여 주문하신 경우에는 구매금액에 관계없이 무료로 배송해 드립니다.

닫기

도서판매처

리뷰쓰기

닫기
* 도서명 :
제대로 배우는 수학적 최적화
* 제목 :
* 별점평가
* 내용 :

* 리뷰 작성시 유의사항

글이나 이미지/사진 저작권 등 다른 사람의 권리를 침해하거나 명예를 훼손하는 게시물은 이용약관 및 관련법률에 의해 제재를 받을 수 있습니다.

1. 특히 뉴스/언론사 기사를 전문 또는 부분적으로 '허락없이' 갖고 와서는 안됩니다 (출처를 밝히는 경우에도 안됨).
2. 저작권자의 허락을 받지 않은 콘텐츠의 무단 사용은 저작권자의 권리를 침해하는 행위로, 이에 대한 법적 책임을 지게 될 수 있습니다.

오탈자 등록

닫기
* 도서명 :
제대로 배우는 수학적 최적화
* 구분 :
* 상품 버전
종이책 PDF ePub
* 페이지 :
* 위치정보 :
* 내용 :

도서 인증

닫기
도서명*
제대로 배우는 수학적 최적화
구입처*
구입일*
부가기호*
부가기호 안내

* 인터넷 서점에서 구입한 도서를 인증하면 마일리지 500점을 드립니다.

* 한빛 웹사이트에서 구입한 도서는 자동 인증됩니다.

* 도서인증은 일 3권, 월 10권, 년 50권으로 제한되며 절판도서, eBook 등 일부 도서는 인증이 제한됩니다.

* 구입하지 않고, 허위로 도서 인증을 한 것으로 판단되면 웹사이트 이용이 제한될 수 있습니다.

닫기

해당 상품을 장바구니에 담았습니다.이미 장바구니에 추가된 상품입니다.
장바구니로 이동하시겠습니까?

자료실