
Complete solutions to Exercise I.1 Page 1 of 4

Complete solutions to Exercises I.1

1. The following are propositions:

(a), (b) and (c). Only (a) is true.

2. (i) Man cannot be pregnant.

(ii) Grass is not green.

(iii) Lecturers annual salary is less than or equal to £45 000.

(iv) There are no integers a and b such that
a
b
 .

(v) There are no integers a and b such that
a
e

b
 .

3. If 2 9 0x   then 2 9x  . If 2 9x  then 9x  . If 9x  then 3x   .

4. (i) If 3x  then 2 9x  .

(ii) If 2 9x  then 3x  .

Yes, both propositions are true.

5. (i) If ABC is an equilateral triangle then all the angles inside the triangle ABC

are equal.

(ii) If all the angles inside the triangle ABC are equal then ABC is an

equilateral triangle.

Both of these are true.

6. (i) If n is prime then 2 1n  is prime.

(ii) If 2 1n  is prime then n is prime.

Part (i) is false because 11 is prime but
112 1 2047 23 89    .

Part (ii) is true.

7. The truth table is given by:
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Q P Q P

T T T

T F T

F T T

F F F

By comparing with the truth table for P Q we have

   P Q Q P   [Equivalent].

8. Truth table is

Q P Q P

T T T

T F F

F T F

F F F

By comparing with the truth table for P Q we have

   P Q Q P   [Equivalent].

9. (a)

P P  P P 

T F F

F T F

Clearly (not P) and P is going to give you false. That is

 P P F   .

(b)

P P  P P 

T F T

F T T

Clearly (not P) or P is going to give you true (T). Such a proposition is called a

tautology which we discuss in the next section:

 P P T   .

(c)
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P P  P 

T F T

F T F

Clearly  P P   .

10. (a)   P P    

(b) P P P 

(c) P P P 

(d)    P P P     [From 10(b).]

11. The truth table is

P Q P Q  P Q  P Q    P Q  

T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

Since the shaded columns are the same we conclude that

     P Q P Q         .

12. Truth table is:

P Q R Q R  P Q R  P Q P R    P Q P R  

T T T T T T T T

T T F T T T F T

T F T T T F T T

F T T T F F F F

T F F F F F F F

F T F T F F F F

F F T T F F F F

F F F F F F F F

Shaded columns agree therefore
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     P Q R P Q P R      .

13. The rule is

if the number of 's is even
...

if the number of 's is odd

P
P

P

     
Since we have 4  ’s in P therefore using this rule we have

P P 
which means the cup is full.

14. The truth table is

P Q P  P Q 

T T F T

T F F T

F T T T

F F T F

15. Truth table is:

P Q R Q  P Q   R R       P Q R R     P Q        P Q R R P Q         

T T T F F F T T T

T T F F F F T T T

T F T T T F F F T

F T T F F F T T T

T F F T T F F F T

F T F F F F T T T

F F T T F F T T T

F F F T F F T T T

The given compound proposition

       P Q R R P Q         
is always true which means it is a tautology.
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Complete Solutions to Exercises I.2

1. We can construct the truth tables to show that the given propositions are

tautologies.

(a)

P P  P P 

T F T

F T T

Hence  P P  is a tautology.

(b) We have

Col

1

Col

2

Col

3

Col 4 Col 5 Col 6 Col 7 Col 8 Col 9

P Q R P Q P R (Col 4) 

(Col 5)

Q R  P Q R  (Col 6)


(Col 8)

T T T T T T T T T

T T F T F F F F T

T F T F T F F F T

F T T T T T T T T

T F F F F F F F T

F T F T T T F T T

F F T T T T F T T

F F F T T T F T T

By looking at the right hand column we can say the following is a tautology:

     P Q P R P Q R               .

(c) Similarly we have

Col

1

Col

2

Col

3

Col 4 Col 5 Col 6 Col 7 Col 8 Col 9

P Q R P Q R Q (Col 4)

(Col 5)

P R  P R Q  (Col 6)


(Col 8)

T T T T T T T T T

T T F T T T T T T

T F T F F F T F T
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F T T T T T T T T

T F F F T F T F T

F T F T T T F T T

F F T T F F T F T

F F F T T T F T T

Hence

     P Q R Q P Q Q               is a tautology.

(d) To show      P Q Q P        is a tautology we have to construct the truth

table:

P Q P Q Q    P Q Q   P      P Q Q P       
T T T F F F T

T F F T F F T

F T T F F T T

F F T T T T T

The truth values in the right-hand column are all true therefore

     P Q Q P       
is a tautology.

2. (a) Proof. We assume m and n are even. By Definition (I.1) they can be written as

2   and  2n a m b 
where a and b are integers. Consider their addition n m :

 
2 2

2        Factorizing

n m a b

a b

  
     

We have n m is of the form 2(An Integer). By applying Definition (I.1) in the 

direction we conclude that n m is even.

■
(b) Proof. We assume m and n are even. By Definition (I.1) they can be written as

2   and  2n a m b 
where a and b are integers. Consider their subtraction n m :

 
2 2

2        Factorizing

n m a b

a b

  
     

We have n m is of the form 2(An Integer). By applying Definition (I.1) in the 

direction we conclude that n m is even.

■
(c) Proof. We assume m and n are odd. By Definition (I.3) they can be written as
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2 1 and 2 1n a m b   
where a and b are integers. Consider n m :

   

 

2 1 2 1

2 2

2        Factorizing

n m a b

a b

a b

    
 

     
We have n m is of the form 2(An Integer). By applying Definition (I.1) in the 

direction we conclude that n m is even whenever m and n are odd.

■
(d) Proof. Let n be an odd number then by (I.3) there is an integer m such that

2 1n m  . Consider 2n :

 
  

   

22

2 2

2 1

2 1 2 1

4 4 1 2 2 2 1 Rewriting 4 2 2

n m

m m

m m m m

 

  
         

We have  2 2 An Integer 1n   . By applying Definition (I.3) in the  direction we

conclude that 2n is odd.

■
(e) Proof. Let n be even. Then by Definition (I.1) this can be written as

2   where  is an integern a a .

Let m be odd then by (I.3) this can be written as

2 1  where  is an integerm b b  .

Consider n m :

    2 2 1 2 1 2 An Integer 1
a m

n m a b a b
 

           .

We have n m is 2(Integer) +1 therefore by (I.3) the number n m is odd.

■
(f) Proof. Let n be an odd number then by (I.3) there is an integer a such that

2 1n a  . Similarly let m be an odd number then there is an integer b such that

2 1m b  . Consider their product nm:

  

   

2 1 2 1

4 2 2 1

2 2 1 2 An Integer 1

nm a b

ab a b

ab a b

  
   

       
We have  2 Integer 1nm   . By applying Definition (I.3) in the  direction we

conclude that the product nm is odd.

■
(g) Proof. Since m is even we can write this as

2m k where k is an integer.
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The product nm is given by

 2 2nm n k kn  .

Hence nm is a multiple of 2 therefore by Definition (I.1) we conclude that nm is even.

■
3. (i) n is odd  1n  is even.

Proof. We assume n is odd. We know n and 1 are both odd therefore by Proposition

(I.4) we have 1n  is even.

■
(ii) For any integer n we have to show  1n n  is even because n and 1n  are

consecutive integers.

Proof. If n is even then by the result of question 2(g) we have  1n n  is even.

However, if n is odd then by the result of question 3(i) we have 1n  is even. Hence

again by Question 2(g) we have  1n n  is even.

■
4. If n is odd then 3 1n  is even.

Proof. By the result of question 2(d) we have n is odd implies 2n is odd. Similarly by

the result of Question 2(f) we have 2n is odd implies 2nn is odd. Hence 2 3nn n is

odd. Since n3 and 1 are odd therefore by the result of question 2(c) we have 3 1n  is

even. This completes our proof.

■
5. (a) We need to prove 0a .

Proof. We have 0 0a  therefore by Definition (I.5) we have 0a .

(b) We need to prove a a .

Proof. We have 1a a  therefore by Definition (I.5) we have a a .

(c) We need to prove 1 a .

Proof. Since 1 a a  so by Definition (I.5) we have 1 a .

(d) Prove 2a a .

Proof. Since 2a a a  so by Definition (I.5) we have 2a a .

(e) Prove na a .

Proof. Since 1n na a a  which is  Integer na a  so by Definition (I.5) we have

na a .

(f) We have to prove   anda b a c a b c  .
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Proof. We have   anda b a c then

ax b and ay c .

Therefore, adding these gives

 b c ax ay a x y     .

We have  a x y b c   which implies  a b c and this completes our proof.

■
(g) Need to prove: 2  anda b a c a bc

Proof. From   anda b a c there are integers x and y such that

ax b and ay c .

Multiplying these together gives

   2which simplifies toax ay bc a xy bc  .

Since  2 Integera bc therefore 2a bc .

■
(h) Need to prove: ac bc a b where 0c  .

Proof. By using Definition (I.5) on ac bc we have there is an integer, x, such that

 ac x bc .

Dividing through by 0c  gives

 a x b which implies a b .

■
(i)  Prove   and   ca b d ac bd .

Proof. From   anda b c d we have integers x and y such that

ax b and cy d .

Multiplying these together gives

 
 

ax cy bd

ac xy bd





 ac xy cd which is  Integerac bd .

By using Definition (I.5) in the direction  we have ac bd which is what was

required.

■
6. (a) We need to prove ‘If n is odd then  28 1n  .’

Proof. We assume n is odd so it can be written as 2 1n m  where m is an integer.

Consider 2 1n  :
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2

22

2

2 1

2

1 2 1 1

4 4 1 1 Expanding

4 4 4 1 Factorizing
m

n m

m m

m m m m
 

   
               

       



We know by Question 3(ii) that  1m m  is even therefore we have

 2

Even

1 4 1n m m  


By Definition (I.1) we can write  1 2m m k  where k is an integer. Hence, we have

 

 

2

2  (Even)

1 4 1

4 2 8
k

n m m

k k


  

 



Since 2 1 8n k  which means   28 Integer 1n  , therefore  28 1n  and this

completes our proof.

■
(b) We need to prove  ‘If n is odd then   2 232 3 7n n  ’.

Proof. We assume n is odd so it can be written as 2 1n m  where m is an integer.

Consider the first term 2 3n  and substituting 2 1n m  into this yields:

 
   

 

22

22

2 2

3 2 1 3

4 4 1 3                        Expanding 2 1

4 4 4 4 1        Factorizing

n m

m m m

m m m m

   
 

       
         

Similarly consider the second term 2 7n  :

 
 

 

22

2

2 2

7 2 1 7

4 4 1 7

4 4 8 4 2

n m

m m

m m m m

   

   

     

Multiplying these together gives

      

   
2 2

2 2 2 2

3 7
2 2

4 4

3 7 4 1 4 2

16 1 2
n n

n n m m m m

m m m m
   

 

      

    

 

Let 2 1m m k   where k is an integer. Substituting this into the above we have

    

 

2 2 2 23 7 16 1 1 1

16 1

k
k

n n m m m m

k k
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By question 3(ii) we have  1k k  is even therefore we can write  1 2k k    where

 is an integer. We have

      2 23 7 16 2      Substituting  1 2

                      32

n n k k       


 


We have     2 232 Integer 3 7n n   . By Definition (I.5) we conclude that

  2 232 3 7n n  .

■
7. Show that if the last digit of an integer n is even then n is even.

Proof. Using the hint we have

         
         

        
  

1 2 2 1
1 2 2 1 0

1 2 3 1
1 2 2 1 0

1 2 3
1 2

1
2

10 10 10 ... 10 10

10 10 10 10 10 10 ... 10 10 10

Taking Out a Factor of 10

2 5 10 2 5 10 2 5 10 ...

2 5 10

m m m
m m m

m m m
m m m

m m m
m m m

n a a a a a a

a a a a a a

a a a

a

 
 

  
 

  
 

           
             

   
        


     

 
     

   

0

1

1 2 3
1 2

01
2 1

2 5

Rewriting 10 as 2 5

5 10 5 10 5 10 ...
2

5 10 5

m m m
m m m

a
a

a a a
a

a a

  
 

 
   

   
   

         
    

The last line says
0

2 An Integern a     . We assume
0
a is even because the given

proposition says “if the last digit of an integer n is even” and
0
a is the last digit. We

can write
0

2a b . We have

 
0

2 An Integer

2 An Integer 2 2 An Integer 1

n a

b

    
            

 An Integer 1  (Another Integer) therefore

 2 Another Integern 

and so by (I.1) we conclude that n is even.

■
8. Show that if the last digit of an integer n is odd then n is odd.

Proof. Very similar to the proof of Question 7.
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Complete Solutions to Exercises I.3

1. We need to show:

   not not      EquivalentP Q P Q                 
Column 1 Column 2 Column 3 Column 4 Column 5

P Q P Q  not P Q  notP Q

T T T F F

T F F T T

F T T F F

F F T F F

Since the last two columns agree we have the required result.

2. (a) We are asked to show 2 3 2 0 1  or   2x x x x      .

Proof.

  . Let 1, 2x x  then

 21 3 1 2 0    and  22 3 2 2 0    .

Hence, we have 21 or 2 3 2 0x x x x      .

  . Now we go the other way and solve the quadratic equation
2 3 2 0x x   :

  2 3 2 1 2 0

1 or 2

x x x x

x x

     
  

This completes our proof.

(b) We are required to prove 2 10 21 0 3 or 7x x x x      .

Proof.

  . Let 3 or 7x x  then substituting into the given quadratic yields

 23 10 3 21 0    and  27 10 7 21 0    .

  . Solving the quadratic

  2 10 21 3 7 0

3, 7

x x x x

x x

     
  

This completes our proof.
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(c) We must prove 2 1 0 1  or  1x x x     . It is proved very similar to

parts (a) and (b). Once you are confident you can apply the  in one go

provided you know it works both ways:

  2 1 0 1 1 0

1, 1

x x x

x x

     
  

This is our required result.

(d) Very similar to the above parts, factorize the given quadratic:

    2 0 0 ,x a b x ab x a x b x a x b           .

(e) Rewrite

  2 2 2 2 0 0 ,x y x y x y x y x y x y           .

3. (a) We have to prove n is even  2n is even.

Proof.

  . By Proposition (I.2) of Example 16 we have n is even  2n is even.

  . Now we need to prove that 2n is even  n is even. How?

By using Proof by Contrapositive which means we prove that n is odd implies
2n is odd. Let n be odd therefore 2 1n m  where m is an integer. Then

   22 2 22 1 4 4 1 2 2 2 1n m m m m m        .

Therefore,  2 22 2 2 1n m m   is odd. Hence, we have 2n is even  n is

even.

By combining both the implications we have our required result; n is even 
2n is even.

■
(b) This time we need to prove mn is odd  both m and n are odd.

Proof.

  . In this part we need to show that both m and n are odd  mn is odd.

Well we have already done this in question 2(f) of the last Exercise I.2.

  . Now we need to prove mn is odd  both m and n are odd. How do we

prove this part?

Proof by contrapositive; that is we show if one of m or n is even then mn is

even. This was proved in question 2(g) in Exercise I.2.

This completes our proof.

■
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(c) We are asked to prove m n is odd  only  or onlym n is odd.

Proof.

  . In this part we show only  or onlym n is odd  m n is odd. This

means that one of the integers is even and other is odd. We have already proved

that m n is odd in question 2(e) of the last Exercise I.2.

  . Now we prove m n is odd  only  or onlym n is odd. How?

We can use proof by contradiction.

Suppose m n is odd but both m and n are also odd. This implies that we can

write these as 2 1m k  and 2 1n l  . Adding these integers gives

2 1 2 1 2( 1)m n k l k l        .

This result 2( 1)m n k l    implies that m n is even. This is a

contradiction. Why?

Because our supposition was m n is odd but now we have this sum is even.

Hence both m and n cannot be odd so only m or only n is odd.

We have shown both parts which means we completed our proof.

■
(d) Now we are asked to prove mn is even  at least one of   orm n is even.

Proof.

  . In this part we show if at least one of  orm n is even then mn is even.

Guess what, we have already done this in question 2(g) of Exercise I.2.

  . Now we need to prove mn is even  at least one of  orm n is even.

How do we prove this?

By contradiction.

Suppose mn is even but both  andm n are odd. Then by the above part (b) of

this question we have mn is odd. This is contradiction because we have mn is

even and odd which is impossible. Therefore our supposition is wrong and mn is

even implies at least one of of  orm n is even.

This completes our proof.

■

4. (a)Q P . We cannot have P Q because if 0a  then 2 0a  .

(b) P Q . (We will prove this in section I.6 under inequalities).

(c) Q P . We cannot have P Q because let 3.1x  so 4x  .

(d) P Q . This works both ways because   2 2 2 1 0x x x x      .
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(e) P Q . Recall that
2 4

2
b b ac

x
a

  
 and will have two real roots if and

only if 2 4 0b ac  .

(f) Q P . PQ for example  2 3 1 but 2 3 and 2 1 .

(g) P Q . We have proven this result in Proposition (I.7).

(h) P Q because 0 1e  .

(i) P Q because  ln 1 0 .

(j) P Q because a and b are positive integers so if a b then n na b and

also if n na b then a b .

(k) P Q because both x and y are positive so

1 1
0 0x y

y x
     .

This will be covered in section F of this chapter under inequalities.

5. Cards E and 9. Note what the statement says if there is a vowel on one

side then an even number on the other side of the card. Card E is clear but why

the card 9?

Because we have P Q proposition so we can check that the contrapositive:

Q P   .

6. For this question we apply the Pigeonhole Principle:

(I.8) Pigeonhole Principle: If there are 1n  or more objects and only n boxes

then some box will contain at least two objects.

Since there are eight students and only seven days in a week so at least a couple

of the students will have their birthday on the same day of the week.

7. Proof. Suppose there is a real number x such that it has two additive

inverses call them y and z. Then y z because if y z then we have a unique

additive inverse and there is nothing left to prove. Thus, we have

 
 

0 †

0 ††

x y

x z

 

 

Subtracting the two equations (†) and (††) gives

0y z y z    .
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Thus, we have y z and y z . Contradiction. Therefore, every real number

has a unique additive inverse.

■

8. Proof. Suppose 0xy  and both 0x  and 0y  . Multiply both sides

of 0xy  by the reciprocal of x. What is the reciprocal of x?

1
x

.

Multiplying 0xy  by
1
x

gives

 1
0

0     Cancelling ' s

xy
x

y x



    
Contradicting the supposition that 0y  . Hence the given proposition ‘ 0xy 

0 or 0x y   ’ is true.

■

9. Proof. Suppose that 2n is odd and n is even. We can write n as

2n m where m is an integer.

Squaring both sides of 2n m gives

   22 2 22 4 2 2n m m m   .

We have  2 2 Integern  which means it is even. Hence, we have 2n is odd and
2n is even. This contradicts our supposition that ‘ 2n is odd and n is even’.

Therefore the given proposition ‘ 2n is odd  n is odd ‘ must be true.

■

10. Proof. Suppose that 3n is odd and n is even. We can write n as

2n m where m is an integer.

Cubing both sides of 2n m gives

   33 3 32 8 2 4n m m m   .

We have  3 2 Integern  which means it is even. Hence, we have n3 is odd and

even which is a contradiction. Our supposition that ‘n3 is odd and n is even’

must be false. Therefore, the given proposition ‘n3 is odd  n is odd ‘must be

true.

■
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11. Proof. Suppose that n3 is even and n is odd. We can write n as

2 1n m  where m is an integer.

Cubing both sides of 2 1n m  gives

 
   

   

33

23

3 2 3 2

2 1

8 3 2 3 2 1 Expanding

2 4 12 6 1 2 4 6 3 1

n m

m m m

m m m m m m

 

       
       

We have  3 2 Integer 1n   which means it is odd. Hence, we have n3 is odd

and n3 is even which is a contradiction. Our supposition that ‘n3 is even and n is

odd’ must be false. Therefore, the given proposition ‘n3 is even  n is even

‘must be true.

■

12. Proof. Suppose that ab is odd and a is even or b is even.

Without loss of generality assume a is even.  We can write this as

2a m where m is an integer.

Therefore 2ab mb which means that ab is even. We have ab is even and ab is

odd. Our supposition that ‘ab is odd and a is even or b is even’ leads to a

contradiction therefore the given proposition ‘ab is odd  both a is odd and b

is odd’ is true.

■

13. Proof. Suppose that ab is even and both a and b are odd.

We can write a and b as

2 1a k  and 2 1b m  where k and m are integers.

Multiplying these 2 1a k  and 2 1b m  yields

  
 

2 1 2 1

4 2 2 1 2 2 1

ab k m

km k m km k m

  

       

 2 Integer 1ab   therefore ab is odd. Since ab is odd and ab is even is a

contradiction therefore our supposition ‘ab is even and both a and b are odd’ is

false so the given proposition ‘ab is even  a is even or b is even’ is true.

■

14. Proof. Suppose that 6 is rational. We can write 6 as

6
p
q
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where p and q have no factors in common apart from 1. Multiplying by q and

squaring gives

 2 2 2

6

6 2 3 Squaring

p q

p q q


     

Since  2 2 Integerp  therefore it is even. By lemma (I.11) we have
2  is  even   is evenp p .

We can write 2p m where m is an integer. Substituting this, 2p m , into
2 26p q gives

2 2

2 2

4 6

2 3 Dividing by 2

m q

m q


    

23q is even therefore by the previous question we have 2q is even because 3 is

odd. By lemma (I.11)
2  is  even   is evenq q .

Both p and q are even which means that they have a common factor of 2. We

have a contradiction because earlier we said p and q have no factors in common

(apart from 1) and now we have shown that they have a common factor of 2.

Our initial statement that ‘ 6 is rational’ must be false therefore 6 is

irrational.

■

15. Proof. Suppose 3 2 is rational. We can write this as

3 2  where  and    have  factors in common
p

p q
q
 no .

Cubing both sides gives
3

3 32 2
p

p q
q

        
.

Since  3 2 Integerp  therefore p3 is even. By Question 11 above we have p3 is

even  p is even. Writing 2p m where m is an integer and taking the cube

of this gives:

 33 32 8p m m  .

Substituting this, 3 38p m , into the above 3 32p q gives

 
3 3

3 3 3

2 8

4 2 2      Dividing by 2

q m

q m m
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Similarly,  3 2 Integerq  therefore q3 is even. Again by Question 11 we have q3

is even  q is even.

Both p and q are even which means that they have a common factor of 2. We

have a contradiction because earlier we said p and q have no factors in common

(apart from 1) and now we have shown that they have a common factor of 2.

Our initial statement that ‘ 3 2 is rational’ must be false therefore 3 2 is

irrational.

■

16. Proof. Suppose there are positive integers a and b such that
2 2 1a b  .

Since 2 2a b is difference of two squares we can write this as

  2 2 1a b a b a b     (*)

Because a and b are positive integers therefore 1a b  . Dividing both sides of

(*) by a b gives

1
1a b

a b
  


implies that 1a b  .

Combining the two results, b a and 1a b  we have

1b a b  
which means that a is an integer between b and 1b  . Since b is an integer

therefore a cannot be an integer because it lies between b and 1b  .

Contradicting our supposition that ‘there are positive integers such a and b such

that 2 2 1a b  ’ .

Hence the given proposition ‘that there are no positive integer solutions such

that
2 2 1a b  ’

must be true.

■

17. (i) Suppose a is rational and b is irrational and a b is rational. We can

write a b as a fraction of two integers p and 0q  ;

p
a b

q
p p qa

b a
q q
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This means that b is rational because we have written it as a fraction of

integers. Hence b is rational and irrational. Contradicts our supposition that ‘a

is rational and b is irrational and a b is rational’. The given proposition ‘the

sum of a rational and irrational number is irrational’ is true.

■
(ii) We are required to prove that a b n is irrational.

Proof.

Since we are given that n is a non-square number so by (I.14) n is irrational.

This implies that b n is irrational. Why?

Because if b n is rational then

p p
b n n

q bq
   where 0q  .

This implies that n rational. Contradicts n is irrational. So we have b n is

irrational. Now applying above result (i) we have

a b n is irrational.

This completes our proof.

■

18. Suppose B C   then AB AC .

A

B CD

We have AB AC therefore

AD AD
AB AC


   sin sinB C B C     .

This is a contradiction because B C   and B C   . Hence the given

proposition is true.

■
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Complete Solutions to Exercise I.4

1. We are asked to prove

 
1

2 4 6 ... 2 2 1
n

m

n m n n


       .

Proof.

For 1n  we have

 2 1 1 1  which is true.

Assume the result is true for n k ; that is

 2 4 6 ... 2 1k k k      (†)

We need to prove the result for 1n k  :

    2 4 6 ... 2 2 1 1 2k k k k         .

Expanding the left-hand side gives

 
     

  
1  by († )

2 4 6 ... 2 2 1 1 2 1

1 2 Factorizing
k k

k k k k k

k k
 

         

      



Thus, by mathematical induction we have our result.

■

2. Proof. Let  P n be the given proposition:    1
2 5 ... 3 1 3 1

2
n n n      .

Check  1P . Substituting 1n  gives

  1
2 1 3 1

2
  √

Hence  1P is true. Assume the proposition is true for n k :

   1
2 5 8 ... 3 1 3 1

2
k k k       (*)

Required to prove the result for 1n k  . We need to prove

         
    

1
2 5 8 ... 3 1 3 1 1 1 3 1 1

2
1

          1 3 4                     * *
2

k k k k

k k

           

  

How do we prove (**)?

By examining the left-hand side and using (*).



Complete Solutions I.4 Page 2 of 18

      
 

  

   

1 3 23 1   by (*)
2

2 5 ... 3 1 3 1 1 2 5 8 ... 3 1 3 1 1

1
    3 1 3 2

2

kk k

k k k k

k k k

  

               

   

 

       

2

7

1 1
3 1 2 3 2     Rewriting  3 2 2 3 2

2 2

1
     3 6 4          Expanding Brackets

2 k

k k k k k

k k k


                
 

          
 



  

21
         3 7 4

2
1

     1 3 4              Factorizing Quadratic
2

k k

k k

     

           

The last line is the right-hand side of (**). Therefore, we have shown (**) and

by induction we have our given proposition.

■

3. We are asked to prove

 23 2

1

1
1

4

n

m

m n n


  .

Proof.

Check for 1n  ;    2 23 1
1 1 1 1

4
  which is correct.

Assume the result holds for n k :

 23 3 3 21
1 2 1

4
k k k     (*)

Now we prove it for 1n k  :

     3 2 23 3 3 1
1 2 1 1 2

4
k k k k        .

Examining the left-hand side of this and using (*) we have



Complete Solutions I.4 Page 3 of 18

 

     

   

     

 

 

22

3 2 33 3 3 2

1
1  by (*)

4

2 32

2 22

2 2

2 2

1
1 2 1 1 1

4

1 1 1
1 4 1 Writing 1 4

4 4 4
1 1

1 4 1 Factorizing 1
4 4
1

1 4 4
4
1

1 2 Because 2
4

k k

k k k k k

k k k

k k k k

k k k

k k k

 

        

 
        
              

      

           



2 2 4 4k k
 

     

Therefore we have shown      3 2 23 3 3 1
1 2 1 1 2

4
k k k k        . By

mathematical induction we have our result.

■

4. Proof. Let  P n be the given proposition:  23 3 31 2 ... 1 2 ...n n       .

Check  1P . Substituting 1n  gives

 231 1 √

Hence  1P is true. Assume the proposition is true for n k :

 23 3 3 31 2 3 ... 1 2 3 4 ...k k          .

Required to prove the proposition for 1n k  :

    
233 3 3 31 2 3 ... 1 1 2 3 4 ... 1k k k k              (†)

Using the given hint on the left-hand side of (†) gives

       3 2 23 3 3 3 1
1 2 3 ... 1 1 2          ††

4
     By Question 3 with  1

k k k k

n k

        

    
How do we show this is equal to the right-hand side of (†)?

By Example 29 which is

 1
1 2 3 4 ... 1

2
n n n       .

Substituting 1n k  into this we have

    1
1 2 3 ... 1 1 2

2
k k k        .
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Squaring both sides gives

     

   

2
2

2 2

1
1 2 3 4 ... 1 1 2

2
1

                                    1 2
4

k k k

k k

 
           

  

This the same as the right-hand side of (††). Therefore, we have shown (†)

which means the result follows by induction.

■

5. We are asked to prove

          
1

1
1 2 2 3 ... 1 1 1 2

3

n

m

n n m m n n n


           .

Proof.

For 1n  we have

    1
1 2 1 1 1 1 2

3
    which holds.

Assume the result is true for n k :

        1
1 2 2 3 ... 1 1 2

3
k k k k k         (†)

Required to prove the result for 1n k  :

            1
1 2 2 3 ... 1 1 2 1 2 3

3
k k k k k k k             (‡‡)

We need to show that the left-hand side is equal to the right-hand side. So,

considering the left-hand side

     
  

        

     

   

1
1 2  by (†)

3

1
1 2 2 3 ... 1 1 2 1 2 1 2

3

1 1
1 2 3 1 2

3 3
1

1 2 3
3

k k k

k k k k k k k k k

k k k k k

k k k

  

              

     

   



We have now shown (‡‡) so our result holds by mathematical induction.

■

6. We have to prove
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          1
1 2 3 2 3 4 1 2 1 2 3

4
n n n n n n n             .

Proof.

First, we check the result for 1n  :

     1
1 2 3 1 2 3 4

4
   which is true.

Secondly, we assume the result holds for n k :

          1
1 2 3 2 3 4 1 2 1 2 3

4
k k k k k k k             (*)

Lastly, we must prove the result holds for 1n k  :

             1
1 2 3 1 2 1 2 3 1 2 3 4

4
k k k k k k k k k k              

Using (*) on the left-hand side and algebra we have

    
   

           

       

    

1
1 2 3  by (*)

4

1
1 2 3 1 2 1 2 3 1 2 3 1 2 3

4

1 1
1 2 3 4 1 2 3

4 4
1

1 2 3 4 Factorizing above line.
4

k k k k

k k k k k k k k k k k k k

k k k k k k k

k k k k

   

                 

       

        




Hence, we have shown our result by mathematical induction.

■

7. We need to prove 1

0

2 2 1
n

m n

m





  .

Proof.

Check the result is true for 1n  :
1

0 1 1 1

0

2 2 2 1 2 2 1m

m





      which is true.

Assume we have the result for n k :

0 1 2 1

0

2 2 2 2 2 2 1
k

m k k

m





        (*)

We have to prove the result for 1n k  :
1

0 1 2 1 2

0

2 2 2 2 2 2 2 1
k

m k k k

m


 



         (**)

How do we show (**)?

By using (*) on the left-hand side of (**):
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1

1
0 1 1 1 1

0 2 1 by (*)
1

2

2 2 2 2 2 2 1 2

2 2 1 because 2

2 1 By using the rules of indices

k

k
m k k k k

m

k

k m n m n

x x x

a a a




  

  


 

       

      
     

 

We have shown (**) so by mathematical induction we have our given result.

■

8. We are asked to show    3 2 2

1

2 1 2 1
n

m

m n n


   .

Proof.

Check the case 1n  :

   3 221 1 2 1 1
      which holds.

Assume the result is true for n k :

         3 3 3 3 2 2

1

2 1 2 1 4 1 2 1 2 1
k

m

m k k k


           (†)

Required to prove

           

   
  



1 3 3 3 3 2 2

1
2 2

2 2

4 3 2

Expanding the brackets and simplifying

2 1 2 1 2 1 2 1 1 2 1 1

1 2 4 1

2 1 2 4 1

2 8 11 6 1

k

m

m k k k k

k k k

k k k k

k k k k





               

   

    

    

 

Examine the left-hand side and apply (†) to the first k sum:

   
 

     

   
2 2

3 3 3 32 2

2 1

24 2 3

4 3 2

2 1 2 1 2 1 2 1 2 1

2 8 3 2 3 2 1

2 8 11 6 1

k k

k k k k k

k k k k k

k k k k

 

         

     

    




Thus, we have shown the above, so our result holds by mathematical induction.

■



Complete Solutions I.4 Page 7 of 18

9. Proof. Let  P n be the given proposition:

   2

4 4 4 4
1 2 1 3 3 1

1 2 3 ...
30

n n n n n
n

   
     .

Check  1P . Substituting 1n  gives

       4
1 1 1 2 1 3 3 1 1 2 3 5 30

1 1
30 30 30

   
    √

Hence  1P is true. Assume the proposition is true for n k :

   2

4 4 4 4
1 2 1 3 3 1

1 2 3 ...
30

k k k k k
k

   
     (*)

Required to prove the proposition for 1n k  :

 
           

      

    

2

44 4 4

2

2

1 1 1 2 1 1 3 1 3 1 1
1 2 1

30
1 2 2 3 3 2 1 3 3 1 Simplifying

and Expanding30

1 2 2 3 3 6 3 3 2

30

k k k k k
k k

k k k k k k

k k k k k k

            
     

        
   
  

      




    
 

21 2 2 3 3 9 5
          **

30

k k k k k    


Expanding the left-hand side of (**) using (*) gives

 
   

 

   
 

    

2

4 44 4 4 4 4 4 4

1 2 1 3 3 1
  by  (*)

30
2

4

2

1 2 1 1 2 3 ... 1

1 2 1 3 3 1
                                  1

30
1

                                 2 1 3 3 1 30
30

k k k k k

k k k k

k k k k k
k

k
k k k k k

   


           

   
  


     

 

 31
 
   

Expanding the square brackets gives:

         32 2 2 3 2

4 3 2 3 2 3 2

4 3 2

2 1 3 3 1 30 1 2 3 3 1 30 3 3 1

                                6 6 2 3 3 30 90 90 30

                                 6 39 91 89 30

k k k k k k k k k k k k

k k k k k k k k k

k k k k

 
               

         

    
Left-hand side of (**) is equal to

        32 4 3 2
1 1

2 1 3 3 1 30 1 6 39 91 89 30
30 30

k k
k k k k k k k k k
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Expanding the right-hand side of (**) also gives this result:

          

 
4 3 2

2

2

6 39 91 89 30

4 3 2

1 2 2 3 3 9 5 1
2 2 3 3 9 5

30 30

1
     6 39 91 89 30

30

k k k k

k k k k k k
k k k k

k
k k k k

    

             

        



Hence the left-hand side is equal to the right-hand side of (**). We have shown

   1P k P k  therefore our given result follows by induction,

   2

4 4 4 4
1 2 1 3 3 1

1 2 3 ...
30

n n n n n
n

   
     .

■

10. Proof. Let  P n be the given proposition:

   22 2

5 5 5 5
1 2 2 1

1 2 3 ...
12

n n n n
n

  
     .

Check  1P . Substituting 1n  gives

         
2 22

2

5
1 1 1 2 1 2 1 1 2 2 2 1 4 3

1 1
12 12 12

       
    √

Hence  1P is true. Assume the proposition is true for n k :

   22 2

5 5 5 5
1 2 2 1

1 2 3 ...
12

k k k k
k

  
     (€)

Required to prove the proposition for 1n k  :

 
        

      

     

22 2

55 5 5 5

2 2 2

2 2 2

1 1 1 2 1 2 1 1
1 2 3 ... 1

12
1 2 2 2 1 2 2 1

12
1 2 2 4 2 2 2 1

12

k k k k
k k

k k k k k

k k k k k

          
      

      


      


     
 

2 2 21 2 2 6 3
                                !

12

k k k k   


Expanding the left-hand side of (!) using (€) gives
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22 2

5 55 5 5 5 5 5

1 2 2 1

12
22 2

5

2

32 2

1 1 1 2 3 ... 1

1 2 2 1
                          1

12
Taking Out a Common

1
                         2 2 1 12 1

12 Fac

k k k k

k k k k

k k k k
k

k
k k k k

  


          

  
  

  
       

 

 

   

 

2

2

4 3 2 3 2

2

4 3 2 3 2

1
tor of

12
1 Expanding

              2 2 12 3 3 1
Brackets12

1
                       2 2 12 36 36 12

12

k

k
k k k k k k

k
k k k k k k

 
 
 

 
 
  

                  
          

 2 4 3 2
1 Collecting Like

 2 14 35 36 12
Terms12

k
k k k k

               
Expanding the right-hand side of (!) gives:

           
    
 

2 2 22
2 2

2

2 2

2

4 3 2 3 2 2

1 2 2 6 3 1
2 2 6 3

12 12
1

                            4 4 2 6 3
12

1
                         2 6 3 8 24 12 8 24 12

12

k k k k k
k k k

k
k k k k

k
k k k k k k k k

      
      

        

            

  
 

2 2

2

4 3 2

                                  Expanding 4 4 2 6 3

1
                            2 14 35 36 12

12

k k k k

k
k k k k

      
        

Hence the left-hand side is equal to the Right-hand side of (!). We have shown

   1P k P k  therefore, our given result follows by induction,

   22 2

5 5 5 5
1 2 2 1

1 2 3 ...
12

n n n n
n

  
     .

■

11.We have to prove 9 divides 10 1n  .

Proof.

Clearly the result holds for 1n  :

 9 10 1 which is correct.
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Assume the result is true for n k :

 9 10 1k  (*)

Required to prove that

 19 10 1k  (**)

Examining 110 1k  :

 
  
 

110 1 10 10 1

9 1 10 1 Writing 10 9 1

9 10 10 1

k k

k

k k

   
       

  

By (*) we have  9 10 1k  and clearly 9 10k which implies that

 19 10 1k  . We conclude by mathematical that 9 divides 10 1n  .

■

12.We are asked to prove  33 n n .

Proof.

Clearly the result holds for 1n  because

 33 1 1 3 0  and this holds as 3 0 0  .

Assume the result is true for n k :

 33 k k (†)

We are required to prove the case for 1n k  , that is

   3
3 1 1k k
       

.

Expanding out    3
1 1k k   gives

   

 
 

3

3 3 2

3 2

3 2

3 2

3  by (†)

1 1 3 3 1 1

3 2

3 3 Writing 2 3

3
k k

k k k k k k

k k k

k k k k k k k

k k k k
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We know  23 3 k k and  33 k k which implies from above that

   3
3 1 1k k
       

. We conclude by mathematical induction that the given

result is true.

■

13.We are asked to prove   3 1 2n n n  .

Proof.

Check the case for 1n  :

  3 1 1 1 1 2  which holds.

Assume the result is true for n k :

  3 1 2k k k  (*)

Required to prove the case for 1n k  :

   3 1 2 3k k k   (**)

Expanding out    1 2 3k k k   yields

      2

3 2 2

3 2

1 2 3 3 2 3

3 3 9 2 6

6 11 6

k k k k k k

k k k k k

k k k

      

     

   

As you may know when proving trigonometric identities one way is move in one

direction and then move in the other direction and see if they meet up. If the

result holds. So now we are going to expand the term   1 2k k k  in (*):

    2 3 21 2 3 2 3 2k k k k k k k k k        .

We can express the previous derivation 3 26 11 6k k k   in terms of this last

expression:

 

  
 

3 2 3 2

2 2 2
3 2 3 2 2

3 2 2

3 2 2

3 3 2  because 1 2 3 2

Writing 6 3 3
6 11 6 3 2 3 9 6

and 11 9 2

3 2 3 3 2 Factorizing out the 3

3 2 3 3 2
k k k k k k k k k

k k k
k k k k k k k k

k k k

k k k k k

k k k k k
      

                
         

     

Therefore  3 23 6 11 6k k k   and in the above we have already shown that
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   3 26 11 6 1 2 3k k k k k k       .

Thus, we have shown (**).

By mathematical induction we have our result.

■

14.We are asked to prove 2n n is an even number.

Proof.

We don’t need to use mathematical induction this time because we have already

proven this result. Where?

Firstly, we can rewrite  2 1n n n n   . What do you notice about  1n n  ?

They are two consecutive integers and we showed in question 3(ii) of Exercise

I.2 that two consecutive integers are even.

■

15. (i) Proof. We first check the proposition for 1n  :

 1

1

a r
a a

r


 


[Cancelling  1 r ’s]

Hence the proposition is true for 1n  . What is our next step?

Assume the proposition is true for n k , that is

 
2 1

1
...

1

k

k
a r

a ar ar ar
r




    


($)

We need to prove the proposition for 1n k  which is the following;

 
 

1

2 1
1

...             #
1

k

k k
a r

a ar ar ar ar
r






     


What do we need to prove?

Left-hand side is equa1 to the right-hand side of (#).  Examining the left-hand

side of  # and using ($) we have
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1 2 1

1
  by ($)

1

...

1

1
1 1

                                Common Denominator
1

k

k k k k

a r

r
k

k

k k

a ar ar ar a ar ar ar ar

a r
ar

r
a r ar r

r

 






         


 


  

    

 

1

Expanding Brackets

on Numerator1

             Because 0
1

k k k

k
k k

a ar ar ar r
r

a ar
ar ar

r



          
       
 11

                               [Factorizing Numerator]
1

ka r

r





The last line is the right-hand side of (#). Therefore, we have shown left-hand

side is equa1 to the right-hand side of (#). Hence, we have our result by

mathematical induction.

■
(ii) Now we are asked to prove

 
1

2

0

1
1 ...   1

1

nn
n m

m

r
r r r r r

r






      

 .

Proof.

This is just a corollary to part (i) because in part (i) we proved:

 
1 2 1

1

1
...

1

n
n

m n

m

a r
ar a ar ar ar

r
 




     

 .

Substituting 1a  and replacing n with 1n  into this gives our required

result.

■

16. Proof. By applying mathematical induction, we have:

Check the result is true for 1n  , that is
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2 1 1
cos cos

2 2
sin( )

2 sin
2
3

cos cos
2 2

  †

2 sin
2

x
x

x
x

x
x

x

              


     
              


     

How do we show the right-hand side simplifies to  sin x ?

We need to use the trigonometric identity:

   cos cos 2 sin sin
2 2

A B A B
A B

                  

on the numerator of (†).

 

 

3 3 3
cos cos 2 sin sin

2 2 4 4

                     2 sin sin         Simplifying
2

                     2 sin sin
2

x x x x x x

x
x

x
x

                                         
           

          
   

 

     Because  sin sin

                      2 sin sin
2
x

x

 
          

      

Substituting this into (†) gives

 
 

 
2 sin sin

2
sin sin       Cancelling 2 sin

2
2 sin

2

x
x

x
x x

x

                      

Hence the proposition is true for 1n  . Next we assume the proposition is true

for n k :

2 1
cos cos

2 2
sin( ) sin(2 ) ... sin( )

2 sin
2

x k
x

x x kx
x

              
   

     

(*)

We need to prove the proposition for 1n k  , that is
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 2 1 1
cos cos

2 2
sin( ) sin( ) sin 1

2 sin
2

2 3
cos cos

2 2

2 sin
2

kx
x

x kx k x
x

x k
x

x

               
    

     
                      


  



             **



What do we need to show?

The left-hand side is equal to the right-hand side of (**). Let’s examine the left-

hand side first.

     
2 1

cos cos
2 2

  by (*)

2 sin
2

2 1
cos cos

2 2
sin( ) ... sin( ) sin 1 sin 1

2 sin
2

x k
x

x

x k
x

x kx k x k x
x               


     

              
      

     



  2 1
cos cos 2 sin sin 1

2 2 2
    Common Denominator

2 sin
2

x k x
x k x

x

                                      

What do we do next?

We can use the following trigonometric identity on the last term of the

numerator;        2 sin sin cos cosA B A B A B    . We have
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2 sin sin 1 cos 1 cos 1
2 2 2

2 2 2 2
              cos cos

2 2 2 2

2 2
                        cos

2

x x x
k x k x k x

k x k xx x

x kx x

                                     
                          
  




2 2
cos

2

2 3 2
                         cos cos

2 2

2 3 2
                          cos cos

2 2

x kx x

x kx x kx

x kx x kx

                  
                      
                  

   

   

    Using cos cos

2 1 2 3
                           cos cos

2 2

k x k x

 

        

                        
Substituting this into the above we have

  

   

 

2 1 2 32 1
cos cos cos cos

2 2 2 2
sin( ) ... sin 1

2 sin
2

2 3
cos cos

2 2

k x k xx k
x

x k x
x

k xx

                                                   
     

       


2 sin
2
x


     

 2 12 1
Because cos cos 0

2 2

k xk
x

                   

. Hence, we have the right-hand

side of (**). Therefore, we have our required result and the proposition is proved

by induction.

■

17. Proof. We first check the proposition for 1n  :
1 1 1( )a b a b a b     .

Hence the proposition is true for 1n  . What is our next step?

Assume the proposition is true for n k , that is

   1 2 2
1

...
2!

k k k k k
k k

a b a ka b a b b 


      (*)
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We need to prove the proposition for 1n k  which is the following;

   
      

   

1 1 21 1 1 2 1

1 1 2 1

1 1 1
1 ...

2!
1

1 ...
2!

k kk k k

k k k k

k k
a b a k a b a b b

k k
a k a b a b b

     

  

  
      


     

What do we need to show to prove this?

Left-hand side is equa1 to the right-hand side. How?

Using (*) and algebraic manipulation.

     

   

 

1 1

1 2 2

by (*)

1 2 2

Multiplying the Long Bracket by

1
...

2!

1
...

2!

k k

k k k k

k k k k

a

a b a b a b

k k
a ka b a b b a b

k k
a a ka ba a b a b a



 

 

   
              


    





 

 

1 2 2

Multiplying the Long Bracket by

1

1
                 ...

2!

1

k k k k

b

k k

k k
a b ka bb a b b b b

k k
a ka b

 






   


  

 



 

1 2

1 2 2 3 1

...
2!

1
...

2!
                          Simplifying by using rules of Indices

k k

k k k k

a b ab

k k
a b ka b a b b



  

  


   

   

   

   

   

1 1 2 1

1 1 2 1

1 1
becausc

2! 2!

1 Collecting
1 ...

like Terms2!

1
1 ...

2!

k k k k

k k k k

k k k k
k

k k
a k a b k a b b

k k
a k a b a b b

  

  

 
 

                    
        
  

Hence, we have

     1 1 1 2 1
1

1 ...
2!

k k k k k
k k

a b a k a b a b b
   


      

The required result. We have proven the binomial theorem for all natural

numbers.

■
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Complete Solutions to Exercises I.5

1. In each case we solve the given equation and we obtain the following

results:

(a)
1
2

A
        

(b)  1, 2B  (c)  1C 

(d)  1, 5D   (e)  3, 3E  

(f)  2, 3, 5, 7F  (these are the prime numbers less than 10.)

2. This time be careful because you need to look at the universal set.

(a) The solution to the give quadratic equation

  1 3 0 1, 3x x x x      .

However our universal set is that natural numbers  so the only member

of the given set A is 1, that is  1A  .

(b) This time solving
1

2 1 0
2

x x    . But we are given

 : 2 1 0B x x    .

Clearly
1
2
 is not a natural number so B   .

(c) We are given the set    : 5 3 1 0C x x x     and solving the

quadratic in this set yields
1

5,
3

x x   . Only 5 is an integer so

 5C   .

(d) This time we have the same quadratic in part (c) so we have the same

solution
1

5,
3

x x   but universal set is the rationals  so

1
, 5

3
D

        
(e) The given linear equation 0x x     . We haven’t shown this

but  is not a rational number so E   .

(f) We have the same equation as part (e) but the universal set is  and 

is a real number so  F  .

3. Using the set notation, we have the following:

(a)  : 0x x  (b)  : 0x x  or  (c)  : 0 2x x  
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(d)  : 1x x  (e)  10 :n n  

4. (a) See Fig. 12.

(b) Same as Fig. 12 with the set labelled B instead of A.

(c) The Venn diagram for  cA B is shaded below:

(d) The Venn diagram for  cA B is shaded:

(e) The Venn diagram for c cA B means we first shade outside of the set

A:

Now we shade outside of B:

The shading overlapping of the last two Venn diagrams gives us

everything outside of A B which is:
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Notice that according to these Venn diagrams we have

 c c cA B A B   .

It can be shown that this result always holds, that is  c c cA B A B   .

5. From Fig. 12 we have

cA

Now for  ccA we only shade the blank part in this Venn diagram which gives

us the set A. Hence  ccA A .

6. (a) We can draw the given sets  : 0 10A x x    and

 : 10 10B x x     on the number line as follows:

Clearly the set A is a subset of B, that is A B .

(b) Again, drawing the given sets  : 0 10A x x    and

 : 0 10B x x    we have

The set A is the set of all the integers (whole numbers) between 0 to 10, that

is  0, 1, 2, , 10A   whilst the set B is all the real numbers between 0 to

10, that is all the line in the above diagram. Again, the set A is a subset of

the set B, that is A B .

Set A

Set B

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

0  x  10

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

-10  x  10

0 1 2 3 4 5 6 7 8 9 10

A

U
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(c) This is similar to the sets in part (b) but we have switched sets A and B.

Therefore, we have B A .

(d) What does the set notation  : 10 10A x x     mean?

It means that x is a natural number between 10 to 10. What numbers does

this set include?

Remember natural numbers are whole numbers greater than or equal to 1,

therefore  1, 2, 3, , 10A   . What does  : 1 10B x x   

represent?

It is the same as the set A because we have integers between 1 to 10, that is

 1, 2, 3, , 10B   .

Hence we have A B and B A which means we have A B .

(e) Both the given sets are the same but one of them includes the end points:

Clearly B A because the set B does not include the end points 0 and 10.

7. Before we evaluate which of the given sets are subsets, we need to

write down the members of each given set:

   
   

2, 2, 3, 5 , : 4 0

:  is prime and less than 10 , : 0 10

A B x x

C x x D x x

     

     



 

Then we check for subsets.

(a) For the given sets   and A we have A  because the empty set  is

a subset of every set.

(b) Is A subset of A?

Yes we have A A . [Every set is a subset of itself].

(c) We need to examine the given sets    2, 3, 5  and 2, 3, 5, 7A C  .

Clearly all the elements of the set A which are 2, 3 and 5 are in the set C

therefore A is a subset of C, that is A C .

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Set A

Set B



Complete Solutions I.5 Page 5 of 8

(d) Similarly, we have    2, 3, 5, 7  and 0, 1, 2, 3, , 10C D   .

Again all the elements of the set C which are 2, 3, 5 and 7 are in the set D

therefore C is a subset of D, that is C D .

(e) Is the set B subset of the set C?

We have    2, 2  and 2, 3, 5, 7B C   but the member 2 in the set

B is not in the set C therefore B C . What does this notation mean?

The set B is not a subset of the set C.

8. We need to write out the elements of each of the given sets.

   
 
   
 

3

: 0 5 , :  is an even number

:   is a multiple of 2

: , :

: 0 2

A x x B x x

C x x

D x x x E x x

F x x

     

 

    

   

 



 



Note that the set D is the empty set because there is no real number x such

that x x .

(a) We have    1, 2, 3, 4  and 2, 4, 6, 8,A B   therefore A B

because the elements 1, 3, 5, … are not in the set B.

(b) Similarly, we have    1, 2, 3, 4  and 2, 4, 6, 8,A C   therefore

A C .

(c) We have    2, 4, 6, 8,  and 2, 4, 6, 8,B C   which means

we have B C .

(d) B and C are the same sets as in part (c), that is

   2, 4, 6, 8,  and 2, 4, 6, 8,B C  

therefore C B . In fact, B C .

(e) We have D   and  1, 2, 3, 4A  therefore the set A cannot be a

subset of the empty set  which means we have A D .

(f) Because D   and the empty set is a subset of every set therefore

D A .

(g) We have the sets    1, 8, 27, 64,  and 1E F  . Thus the set

 1, 8, 27, 64,E   cannot be a subset of the set  1F  . We have

E F .
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(h) As part (g) we have    1, 8, 27, 64,  and 1E F  and since the

member 1 is in the set  1, 8, 27, 64,E   therefore F E .

9. What does the term cardinality mean?

Cardinality is the number of elements in the set and is denoted by A .

(a) Since  denotes the empty set which means it has no elements therefore

0  .

(b) We are given the set  , ,A a b c therefore 3A  because the set has

3 members.

(c) We are given  2: 3 0A x x x    and we need to find the elements

of this set A. Solving the given quadratic

 
23 0

3 1 0 Factorising

1
0,

3

x x

x x

x x

 
     

 

Since x   therefore members of this set A can only be integers (whole

numbers) which means only 0 is a member. Thus  0A  . What is the

cardinality of this set?

Since the set is a singleton (only one element) therefore the cardinality

1A  .

(d) What are the elements of the given set  : 1A x x x    ?

For any real number x we have 1x x  therefore there are no x values

which satisfy the equation 1x x  . Hence the set A is empty, that is A  

and so 0A  .

10. We are given the sets

 1, 2, 3, 4, 5A and  :  is a prime number 5B x x   .

What are the elements of the set B?

   :  is a prime number 5 2, 3, 5B x x    .

How can we show A B ?

Recall by Definition (I.22) we have A B if every element of set A is also in

the set B. In this case we have 1 A but 1 B therefore A B .
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How do we show B A ?

Again, by using the definition (I.22) we show that every element of the set B

is also in the set A. We have  2, 3, 5B  and all three elements 2, 3 and 5

are in the set  1, 2, 3, 4, 5A  therefore B A .

11. We have  1, 3A  ,  1, 3, 3, 1B  and
3

1, 3, ,
1

C



        
.

Remember from main text that a set such as  ,a b is the same as

 , , ,a b a b . Here we have

   1, 3, 3, 1 1, 3B  

   3
1, 3, , 1, 3, 3, 1 1, 3

1
C




         

Thus, we have  1, 3A B C   .

12. Proof. (By Contradiction).

Suppose there is an integer n such that

 
1

1
1 2 3 4 ...

2

n

m

n n
m n




       (*)

Consider the set S given by

 1
: 1 2

2

n n
S n n
              

 

By (*) the set S is non – empty. By the Well Ordering Principle (WOP) there

is a least element, say m, which is a member of the set S. Note that 1m 

because for 1n  we have our given result. Clearly 1m S  because m is

the least positive integer in S. This implies the given proposition is true of

1m  :

      1 1 1 1
1 2 3 ... 1

2 2

m m m m
m

   
       (**)

Using this (**) to find the sum of the first m terms gives

   

 2 2

1
1 2 3 ... 1

2
12

2 2 2

m m
m m m

m mm m m m m
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This implies the given proposition is true when n m . Therefore, m cannot

be the least positive integer where the given proposition is false. This is a

contradiction so,

there is no least integer where the given proposition is false.

■

13. We need to prove

Principle of Mathematical Induction (I.15)

For each natural number n, let  P n be a proposition about n. If  P n

satisfies:

1)  1P is true,

2)For an arbitrary k,  P k is true implies  1P k  is true.

Then for all natural numbers, n, we have  P n is true.

By using the WOP.

Proof.

Suppose the result is not true for all the natural numbers. There is n such

that  P n is false. Let S be the subset of natural numbers where  P n is

false. Then S is non – empty. By the Well Ordering Principle:

(I.24) Every non-empty subset of positive integers has a least element.

The set S has a lease element. Let  be this least element. Then 1 S

therefore 1 which implies that 1 0  is a natural number. However

1 cannot be in S because 1   and  is the least element of S.

With 1 S  which implies that  P n is true for 1n   . Applying step

2 of the induction principle (I.15) on 1n   gives that

1 1 1n      
Therefore the  P  is true but this is impossible because  is in S which

implies that  P  is false. We have a contradiction, that is S is an empty

set and the result is true for all natural numbers. This completes our proof.

■
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Complete Solutions to Exercises I.6

1. Proof. Since a b which means that 0a b  and so

 
0

        0

a b a c c b

a c b c


    

    



From   0a c b c    we have the required result, a c b c   .

■

2. Proof. From the two given inequalities, a b and b c , we have

0a b  and 0b c  respectively.

Adding these inequalities, 0a b  and 0b c  , we have

0

0

        0  which implies

a b b c

a c a c


   

  



Hence, we have a c which is what we were trying to prove.

■

3. Proof. From the two given inequalities, a b and c d , we have

a c a d b d    
Hence, we have our result,a c b d   .

■

4. (a) Proof. We use prove by contradiction. Suppose
1

0
x
 . Multiplying

through by 2 0x  we have

   2 21
0

      0

x x
x

x




0x  (x is less than 0) is a contradiction because we are given 0x  (x is

greater than 0). Hence our supposition
1

0
x
 is wrong therefore we have our

result,
1

0
x
 .

■

(b)Proof.  Suppose
1

0
x
 . Multiplying through by 2 0x  we have

   2 21
0

       0

x x
x

x
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0x  (x is greater than 0) is a contradiction because we are given 0x  (x is

less than 0). Hence our supposition
1

0
x
 is wrong therefore we have our result,

1
0

x
 .

■

5. (a) Proof.  We use proof by contradiction. Suppose
1 1
a b
 . From this we

have

1 1
0

0       Multiplying through by
a b
b a ab

b a

 

     


Remember b a a b  . Contradiction! How?

Because we are given a b (a is less than b) and we have deduced a b (a is

greater than b). Our supposition
1 1
a b
 must be false. Therefore

1 1
a b
 . But

1 1
a b
 because a b . Hence, we have the strict inequality,

1 1
a b
 .

■

(b) Proof.  We use proof by contradiction. Suppose
1 1
b a
 . From this we have

1 1
0

0          Multiplying through by
b a
a b ab

a b

 

     


Recall a b b a   . Contradiction! How?

Because we are given b a (b is less than a) and we have deduced b a (b is

greater than a). Our supposition
1 1
b a
 must be false. Therefore

1 1
b a
 . But

1 1
a b
 because a b . Hence, we have

1 1
b a
 .

■

6. (a) Proof. We have 0 a b  and if 0x  then 2 0x  , therefore
2 2 0ax bx  . If 0x  then by Proposition (I.30) we have 2 0x  and so
2 2ax bx . Hence, we have the result that we are trying to prove, 2 2ax bx .

■
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(b) Proof. If 0x  then 2 0x  , therefore 2 2 0ax bx  . If 0x  then by

Proposition (I.30) 2 0x  and multiplying this by 1 gives

   2

2

1 1 0        Change Inequality because 1 0

   0

x

x

       
 

Multiplying the given inequality, a b , by 2x we have

   
   

2 2 2

2 2 2 2 2 2

       Change Inequality because 0

         Because   and

a x b x x

ax bx a x ax b x bx

       
           

which is the result we are trying to prove, 2 2ax bx  .

■

7. Proof. We have

 22 2 1 1 0     By the Proposition (I.30)x x x         
■

8. Proof. We have
2

2

2

2

5 25
5 9 9        Completing the Square

2 4

5 25 36 36
                    Because  9

2 4 4 4

5 11
2 4

11 11
               0

4 4

x x x

x

x

              
               
       

  
2

5
        Because 0

2
x

         
 

■
9. Proof. We have

 
 

2 2 2

2 2

2

          2             *

a b a ab b

a b ab

   

  

We need to prove 2 2 2a b ab  . How?

Consider  2a b . By Proposition (I.30) we have  2 0a b  and

 2 2 2 2 22 0  which implies that 2a b a b ab a b ab      

Substituting this inequality, 2 2 2a b ab  , into (*) gives

 2 2 2 2

          2 2 4

a b a b ab

ab ab ab

   
  

This,  2 4a b ab  , is the required result.

■
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10. Proof. We have

     
2

2 21 1 1
         †

2 4 2
x y x y xy

 
      

We are required to prove that  2 21 1
2 4

xy x y  . How?

Consider  
2

1
2

x y
 
   

. By Proposition (I.30) we have  
2

1
0

2
x y

 
    

and

   

 
 

2

2 2

2 2

2 2

1 1
2         Expanding

2 4
1 1

             0
4 2

1 1
4 2

x y x xy y

x y xy

x y xy

 
          

   

 

We can write the last line,  2 21 1
4 2

x y xy  , as  2 21 1
2 4

xy x y  and

substituting this into (†) gives

   

   
 

2

2 2

2 2 2 2

2 2

1 1 1
2 4 2

1 1
4 4
1
2

x y x y xy

x y x y

x y

 
      

   

 

We have proven our result,    
2

2 21 1
2 2

x y x y
 
     

.

■

11. We use Definition (I.32) which is
         if  0

         if   0

x x
x

x x

   
in each case:

 ,e e e e e     ,

 2 2 2     ,

 6 7 13 13 13        ,

3 1 1 1
cos

4 2 2 2

                    
.

12. We need to solve inequalities using the modulus function. In each case we use

(I.34) x a a x a     .
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a. We are given 1x  therefore by (I.34) we have

1 1 1x x     .

b. Similarly, we have x x       .

c. Now we are given 1 1x   so using (I.34) we have

1 1 1 1 1

1 1 1 1

0 2

x x

x

x

      
     
  

d. Similarly we have

5 2 2 5 2

2 5 2 5

3 7

x x

x

x

      
     
  

13. We need to prove x y y x   .

Proof.

We use Proposition (I.35) xy x y on this. We have

 
 1

1 By (I.35)

1

x y y x

y x

y x

y x y x

   

  
      

   

Therefore x y y x   .

■

14. We are asked to prove
1 1
x x
 where 0x  .

Proof.

We use Proposition (I.35) xy x y :

11 1 1 1
1 1 1

x x x x x
       .

This completes our proof.

■

15. We are asked to prove
xx

y y
 where 0y  .

Proof.
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We use Proposition (I.35) xy x y and the result of the previous question

we have

1

11 1

x
x

y y
x x

x x
y y y y

 


     

This finishes our proof.

■

16. We are required to prove
1 1
n n
 .

Proof.

We use Proposition (I.35) xy x y and also
1 1
n n
 because n   and

the natural numbers are positive. We have

1 1 1 1 1
1 1 1

n n n n n
      

.

This completes our proof.

■

17. We can disprove  2 21 2n n  by giving a counter example. Consider

3n  , therefore

   2 23 1 16 2 3 18    .

(Challenge). Proof. We use proof by induction because the given result

concerns natural numbers. The procedure for induction is to prove the result

for 3n  , assume it is true for n k and then prove it for 1n k  . For

3n  we have

   2 23 1 16 2 3 18    . √

Assume the result is true for n k that is

 2 21 2k k  (*)

Required to prove

   2 2
1 1 2 1k k   

How?
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By expanding the left - hand side and using the result  2 21 2k k  :

   

 

 
2

2 2

2

2

1

2

1 1 2

              4 4

              2 1 2 3

              1 2 3

k

k k

k k

k k k

k k

 

   

  

    

   



Using (*) we have

   

 

2 2

2

22

1 1 1 2 3                   From Above

              2 2 3  By (*)

              2 4 2 2 1

k k k

k k

k k k

         
      

    

Hence, we have our result for 1n k  . Therefore, by induction we have

proven  2 21 2n n  . (End of Challenge).

■

■

18. We need to evaluate
5

1

2 1 2 1
2 2j

j j
j j

             
 . Note that the numerator is

difference of two squares and the denominator is square term. We have
2

2

2 1 2 1 4 1
2 2 4

j j j
j j j

               

By substituting 1, 2, 3, 4j  and 5 we have

 
 

 
 

 
 

 
 

25 5

2
1 1

2 2 2 2

2 2 2 2

2 1 2 1 4 1
2 2 4

4 2 1 4 3 1 4 4 1 4 5 14 1
4 4 2 4 3 4 4 4 5

3 15 35
4 16 3

j j

j j j
j j j 

                          
                                                                      

  

 

 
9 823 27563 99

0.666 3sf
6 64 100 14 745 600
   

We also need to find
5

1

2 2 1 2 1
2 2j

j j
j j 

              
 . By the above result we have

 
5

1

2 2 1 2 1 2
0.666 0.0296 0.0296 3sf

2 2j

j j
j j 

                  


19. Here we only give some of the complete solutions as the method is identical

with different numbers.
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(a) We are given 2 4 3x x  and so we have

   2 22 4 3 2 4 3 2 1x x x x        

(b) Similarly, for 2 7 1x x  we have
2 2

2

2 2

7 7
7 1 1

2 2

7 49 4 7 45
2 4 4 2 4

x x x

x x

                   
                    

(e) We write the given quadratic polynomial 29 8x x  as

 
     

2 2

2 2 2

9 8 9 8

9 4 16 9 4 16 25 4

x x x x

x x x

    
 

             
(f) We take out a factor of 3 from the given quadratic polynomial

23 7 1x x  :

2 2

2 2

2 2

7 1
3 7 1 3

3 3

7 7 1
3

6 6 3

7 49 12 7 37
3 3

6 36 36 6 36

x x x x

x

x x

         
                     
 
                                
   

Now taking the 3 in the last term on the right we have
2 2

2 7 37 7 37
3 7 1 3 3 3

6 36 6 12
x x x x

                                 

(ii) All the hard work has been done in part (a). If we repeat the technique

given in Example 44 we have:

(a)  22 4 3 2 1 0 1 1y x x x         gives

 2min : 4 3 1y y x x    

(b)
2

2 7 45 45 45
7 1 0

2 4 4 4
y x x x

             
we obtain

 2 45
min : 7 1

4
y y x x    

(e)  229 8 25 4 25 0 25y x x x         . So, we have

 2max : 9 8 25y y x x    
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(f)
2

2 7 37 37 37
3 7 1 3 0

6 12 12 12
y x x x

             
. Hence

 2 37
min : 3 7 1

12
y y x x    

20. The complete solutions are at the following url:

Complete solutions to question 20

You need to look at solutions to question 2 and for part (l) the solution is to

question 4.
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