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Complete Solutions to Exercises 6.5

1. (i) We need to show that 3 is a primitive root of both 5 and 25 25 .

Since  5 4  so we only need to find powers of 3 which are proper factors of

4; that is 2. We have

 23 9 4 mod 5 

As 23 4   1 mod 5 so 3 is a primitive root of modulo 5.

We also need to show that 3 is also a primitive root of 25 25 .

The Euler phi function of 25 is    25 5 5 1 20    .

By Lemma (6.24):

Let r be a primitive root of p. Then the order of r modulo 2p is either 1p or

   2 1p p p   .

Just need to show that the order of 3 modulo 25 is not 5 1 4  . We have

 43 81 6 1 mod 25  

By the above Lemma (6.24) the order of 3 modulo 25 must be

   25 5 5 1 20   

Therefore 3 is a primitive root of modulo 25.

(ii) This time we need to show that 8 is a primitive root of 5 and 25.

In part (i) we showed that 3 is a primitive root of 5 so 8 is also a primitive root

of 5 because  8 3 mod 5 .

Just need to show that 8 is a primitive root of modulo 25.

Again by the above Lemma (6.24) we need to show that  48 1 mod 25 .

   2
4 2 28 8 14 196 4 1 mod 25     

Since  48 1 mod 25 so the order of 8 modulo 25 is

   25 5 5 1 20   

Hence 8 is a primitive root of modulo 25.

2. Note that 327 3 . We only need to find a primitive root of 23 . Why?

Because by Proposition (6.29):

Let p be an odd prime and r be a primitive root of modulo 2p . Then r is a

primitive root of every power of p.



Complete Solutions to Exercises 6.5 Page 2 of 24

To find a primitive root of 23 we use Lemma (6.24):

Let r be a primitive root of p. Then the order of r modulo 2p is either 1p or

   2 1p p p   .

2 is a primitive root of modulo 3. By this Lemma the order of 2 modulo 32 can

only be 3 1 2  or    23 3 3 1 6    .

 22 4 1 mod 9 

Hence the order of 2 modulo 9 must be 6 so it is a primitive root of modulo
23 9 .

By Proposition (6.29) we have 2 is a primitive root of modulo 327 3 .

We need to find another primitive root of 27.

By Proposition (6.28):

Let r be a primitive root of an odd prime p. Then either r or r p (or both)

is a primitive root of kp where 1k  .

By this proposition we have that 2 or 2 3 5  is a primitive root of 27.

Using the above Lemma (6.24) we test the index 3 1 2  :

 25 25 1 mod 9 

Hence the order of 5 is    23 3 3 1 6    so it is a primitive root of 9.

By the above Proposition (6.28) we conclude that 5 is a primitive root of

modulo 27.

3. Since 211 121 so we find a primitive root of 11 because by Proposition (6.28):

Let r be a primitive root of an odd prime p. Then either r or r p (or both) is

a primitive root of kp where 1k  .

So first we find a primitive root r of 11.

We have  11 10  . The factors of 10 are 1, 2, 5 and 10. We only need to find

indices 2 and 5 as index 10 will always give us 1 modulo 11 because of Euler’s

Theorem.

Using base 2 we have
2 52 4, 2 32 10     1 mod 11

Hence 2 is a primitive root of 11. Let us test if 2 is also a primitive root of
211 121 . How?

We use Lemma (6.24):
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Let r be a primitive root of p. Then the order of r modulo 2p is either 1p or

   2 1p p p   .

Evaluating the index 11 1 10  :

 102 1024 56 1 mod 121  

Hence the order of 2 modulo 112 is    211 11 11 1 110    .

Therefore 2 is a primitive root of modulo 211 121 .

4. We need to verify that 10 is a primitive root of 27 49 .

First we find a primitive root of 7 and then we use this to show that 10 is a

primitive root of 27 49 .

We have already shown in Example 28 that 3 is a primitive root of modulo 7.

Note that

 10 3 mod 7

This  10 3 mod 7 implies that 10 is also a primitive root of modulo 7.

To show that 10 is also a primitive root of 27 49 we find the order of 10

modulo 49. By Lemma (6.24):

Let r be a primitive root of p. Then the order of r modulo 2p is either 1p or

   2 1p p p   .

The order of 10 modulo 49 must be 7 1 6  or    27 7 7 1 42    .

We have

   3
6 2 3 310 10 100 2 8 1 mod 49    

Hence the order of 10 modulo 49 must be 42 so 10 is a primitive root of modulo

49.

Note that 3343 7 and by Proposition (6.29):

Let p be an odd prime and r be a primitive root of modulo 2p . Then r is a

primitive root of every power of p.

Hence 10 is a primitive root of 37 343 .

5. We need to show that 47 is a primitive root of 49.

This is established by showing that

 7 1 647 47 1 mod 49  
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47 is too large a residue to work with. Since  47 2 mod 49  and it is easier

to work with 2 rather than 47 we have

   6647 2 64 1 mod 49   

Since  6 247 1 mod 7 so the order of 47 is    27 7 7 1 42    . This

implies that 47 is a primitive root of modulo 27 49 .

6. (i) Note that 481 3 . We know that 2 is a primitive root of 3.

One shortcut would be to show that 2 is also a primitive root of 23 9

because by Proposition (6.29):

Let p be an odd prime and r be a primitive root of modulo 2p . Then r is a

primitive root of every power of p.

We use Lemma (6.24) to show that 2 is a primitive root of 23 9 :

Let r be a primitive root of p. Then the order of r modulo 2p is either 1p or

   2 1p p p   .

We have

 3 1 22 2 4 1 mod 9   

Hence 2 is a primitive root of modulo 23 9 . So by the above Proposition

(6.29) we conclude that 2 is also a primitive root of modulo 43 81 .

(ii) This time we need to show that 5 is a primitive root of 81.

Since  5 2 mod 3 so 5 is a primitive root of modulo 3.

We need to show that 5 is also a primitive root of 23 9 .

 3 1 25 5 7 1 mod 9   

Hence 5 is a primitive root of 23 9 .

By Proposition (6.29) we have that 5 is a primitive root of 43 81 .

(iii) We need to show that 79 is not a primitive root of 81. We have

 79 1 mod 3

1 is not a primitive root of modulo 3 so 79 cannot be a primitive root of modulo

3.

Hence 79 is not a primitive root of modulo 81.
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7. (a) Since 10 2 5  which is of the form 2 kp where 5p  and 1k  so it has

a primitive root because by Proposition (6.32):

The positive integer 1n  has a primitive root  2, 4, , 2k kn p p where p

is an odd prime and 1k  .

We need to find a primitive root of modulo 10. We use Proposition (6.31):

If r is a primitive root of modulo kp then

(a) r is also a primitive root modulo 2 kp provided r is odd.

(b) kr p is a primitive root modulo 2 kp provided r is even.

We have already established 2 is a primitive root of 5. We don’t need to check

that 2 is a primitive root of 10. Why?

Because 2 is even so 2 is not a primitive root of 10.

By the above Proposition (6.31) we have 2 5 7  is a primitive root of 10.

[3 is also a primitive root of 10.]

(b) As 212 2 3  so it has no primitive roots. [It is not of the form 2 kp .]

(c) Since 250 2 5  so it is of the form 2 kp so it has primitive roots. We know

that 2 is a primitive root of modulo 5.

Again 2 being even it cannot be a primitive root of 50 because of the above

Proposition (6.31).

Hence a primitive root of 50 is 22 5 27  .

(d) Since 2 2100 2 5  so it has no primitive roots.

(e) Since 298 2 49 2 7    so it has a primitive root. We have already

established that 3 is a primitive root of 7. As 3 is odd so 3 is also a primitive

root of 98.

(f) We know that 218 2 3  so it has a primitive root. Again we have already

established that 2 is a primitive root of 3. Since 2 is even so by Proposition

(6.31)(b) we have 22 3 11  is a primitive root of 18.

(g) We have 22 2 11  which is of the form 2 kp so it has a primitive root.

What is a primitive root of the odd prime 11?

You can show that 2 is a primitive root of 11. Since 2 is even so

2 11 13  is a primitive root of modulo 22

(h) Note that 118 2 59  and 59 is an odd prime. We need to first find a

primitive root of 59.

The Euler phi function of 59 is

 59 59 1 58   
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Factorizing 58 gives 58 2 29  . Evaluating the first power, 2, with base 2

gives  22 4 mod 59 . We also need to find the second power, 29, with base 2.

Working out powers of 2 we have

 62 64 5 mod 59 

By the division algorithm we have

 29 6 4 5  

Hence

     46 4 529 6 5 42 2 2 2 5 32 625 32 58 1 mod 59
          

This  292 1 1 mod 59   implies that 2 is a primitive root of 59.

Since 2 is even so 2 59 61  is a primitive root of 118.

8. We can easily show that 2 is a primitive root of modulo 25. How many

incongruent primitive roots does 25 have?

By question 18 of the Supplementary Problems on Chapter 6:

If n has a primitive root then it has exactly   n  incongruent primitive

roots.

We have

          2 225 20 2 5 2 5 2 4 8            

There are 8 incongruent primitive roots of modulo 25.

To find the primitive roots of modulo 25 we use Lemma (6.24):

Let r be a primitive root of p. Then the order of r modulo 2p is either 1p or

   2 1p p p   .

To determine whether an integer r p is a primitive root of 25.

Let us check if 2 5 7  is a primitive root of 25.

 5 1 47 7 1 mod 25  

This  47 1 mod 25 implies 7 is not a primitive root of 25.

Let us next trial 7 5 12  :

 412 11 1 mod 25 

Hence 12 is a primitive root of modulo 25.

Adding another 5 gives 12 5 17  :

 417 21 1 mod 25 
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Hence 17 is a primitive root of modulo 25.

The last of these is 17 5 22  :

 422 5 1 mod 25 

Hence 22 is a primitive root of modulo 25.

So far we have 4 primitive roots of modulo 25 and these are 2, 12, 17 and 22.

There are 4 more.

We have shown in the main text that 3 is also a primitive root of 5. Let us see

if this is also a primitive root of 25:

 43 81 6 1 mod 25  

Hence 3 is a primitive root of modulo 25.

Next we test 3 5 8  :

 48 21 1 mod 25 

Therefore 8 is also a primitive root of 25.

Now we test 8 5 13  :

 413 11 1 mod 25 

13 is also a primitive root of 25.

Next we test 13 5 18  :

 418 1 mod 25

This  418 1 mod 25 implies that 18 is not a primitive root of 25.

Now we test 18 5 23  :

 423 16 1 mod 25 

Hence 23 is a primitive root of 25.

Collecting all 8 of the incongruent primitive roots of modulo 25:

 2, 3, 8, 12, 13, 17, 22, 23

9. We have shown in Example 28 that 3 is a primitive root of 49.

By question 18 of the Supplementary Problems on Chapter 6:

If n has a primitive root then it has exactly   n  incongruent primitive

roots.

The number of incongruent primitive roots of modulo 49 are

              249 7 7 6 42 6 7 2 6 12             

We have 12 incongruent primitive roots of modulo 49.
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3 is one of these primitive roots.

We use Lemma (6.24):

Let r be a primitive root of p. Then the order of r modulo 2p is either 1p or

   2 1p p p   .

We need to determine whether an integer r p is also a primitive root of
249 7 .

We test 3 7 10  to the index 7 1 6  :

 610 8 1 mod 49 

Hence 10 is a primitive root of 49.

Now we test 10 7 17  :

 617 22 1 mod 49 

Therefore 17 is also a primitive root of 49.

Continuing in this manner by adding 7 each time we have the following

congruences:

 624 36 1 mod 49 

 
   
   

6

66

66

31 1 mod 49

38 11 15 1 mod 49

45 4 29 1 mod 49



   

   

Out of these 24, 38 and 45 are primitive roots of modulo 49. So far we have

3, 10, 17, 24, 38 and 45 incongruent primitive roots modulo 49

We can show that 5 is also a primitive root of 49.

This time adding a multiple of 7 to 5 gives the integers

12, 19, 26, 33, 40, 47

Testing each of these integers to the index 7 1 6  :

 
 

 
 
 
 

6

6

6

6

6

6

12 22 1 mod 49

19 1 mod 49

26 29 1 mod 49

33 8 1 mod 49

40 36 1 mod 49

47 15 1 mod 49

 



 

 

 

 

Similarly we have 12, 26, 33, 40 and 47 are primitive roots of modulo 49.

Collecting all the primitive roots of modulo 49 we have that
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 3, 5, 10, 12, 17, 24, 26, 33, 38, 40, 45, 47

These are all the 12 incongruent primitive roots of modulo 49.

10. We need to find all the incongruent primitive roots of modulo 54. First we show

that 54 does have primitive roots.

Since 354 2 27 2 3    which is of the form 2 kp so 54 does have primitive

roots. The Euler phi function of 54 is given by

         3 3 254 2 3 2 3 1 3 3 1 18              
How many primitive roots does 54 have?

By question 18 of the Supplementary Problems on Chapter 6:

If n has a primitive root then it has exactly   n  incongruent primitive

roots.

Evaluating   54  we have

            54 18 2 9 2 9 1 3 2 6             

Modulo 54 has 6 incongruent primitive roots.

How do we find all 6 incongruent primitive roots of modulo 54?

By using Proposition (6.31):

If r is a primitive root of modulo kp then

(a) r is also a primitive root modulo 2 kp provided r is odd.

(b) kr p is a primitive root modulo 2 kp provided r is even.

In our case 3p  because 354 2 3  .

In the hint we are given that  2, 5, 11, 14, 20, 23 are primitive roots of modulo

27.

In this list  2, 5, 11, 14, 20, 23 the integers 5, 11 and 23 are odd so by the above

proposition they are primitive roots of modulo 354 2 3  .

2 is even so 32 3 29  is a primitive root of modulo 54.

Similarly 14 is even so 314 3 41  is a primitive root of modulo 54.

Also 20 is even so 320 3 47  is a primitive root of modulo 54.

The incongruent primitive roots of modulo 54 are

 5, 11, 23, 29, 41, 47

11. We need to find all the incongruent primitive roots of modulo 38.
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Since 38 2 19  so it has primitive roots because it is of the form 2 kp .

How many primitive roots does modulo 38 have?

By question 18 of the Supplementary Problems on Chapter 6:

If n has a primitive root then it has exactly   n  incongruent primitive

roots.

Therefore modulo 38 has

     
    
        2

38 2 19

2 19

19 18 2 3 3 3 1 6

   

  

   

 

 

      

Hence modulo 38 has 6 incongruent primitive roots.

We first find a primitive root of modulo 19 as in this case we have 19p  .

You can check that 2 is a primitive root of modulo 19.

We can find the other primitive roots of modulo 19 by using Proposition (6.18):

Let r be a primitive root of modulo p where p is prime. Then  modmr p is also

a primitive root of modulo p provided  gcd , 1 1m p   .

We use 2r  to find the other primitive roots of modulo 19.

Also 1 19 1 18p    . We only consider the m values which are relatively

prime to 18. These are 5, 7, 11, 13 and 17:

 52 32 13 mod 19 

 72 128 14 mod 19 

 112 15 mod 19

 132 3 mod 19

 172 10 mod 19

Thus the primitive roots of modulo 19 are 2, 3, 10, 13, 14 and 15.

How do we find the 6 incongruent primitive roots of modulo 38?

By using Proposition (6.31):

If r is a primitive root of modulo kp then

(a) r is also a primitive root modulo 2 kp provided r is odd.

(b) kr p is a primitive root modulo 2 kp provided r is even.
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Since the primitive roots of modulo 19 are 2, 3, 10, 13, 14 and 15 so the odd

ones amongst this list are also primitive roots of modulo 38, that is 3, 13 and 15

are primitive roots of modulo 38.

Since 2 is even so with 2, 19r p  we have 2 19 21r p    is a

primitive root of modulo 38.

Also 10 is even so 10 19 29  is a primitive root of modulo 38.

Finally 14 is even so 14 19 33  is a primitive root of modulo 38.

All the incongruent primitive roots of modulo 38 are

 3, 13, 15, 21, 29, 33

12. We first need to show that 14 is a primitive root of modulo 29. The Euler phi

function of the prime 29 is 28. The proper divisors of 28 are 2, 4, 7 and 14:

 214 22 mod 29

 4 214 22 20 mod 29 

 7 4 314 14 14 20 2744 12 mod 29    

   2
14 7 214 14 12 144 28 mod 29   

Hence 14 is a primitive root of modulo 29.

We also need to show that 14 is not a primitive root of modulo 229 . How do we

show this?

By Lemma (6.24):

Let r be a primitive root of p. Then the order of r modulo 2p is either 1p or

   2 1p p p   .

We need to show that the order of 14 modulo 229 is 29 1 28  . By evaluating

powers of 14 we have

   2
28 4 2 214 14 28 1 mod 29  

Hence 14 cannot be a primitive root of modulo 229 .

By Proposition (6.28):

Let r be a primitive root of modulo p where p is an odd prime. Then either r

or r p (or both) is a primitive root of kp where 1k  .

A primitive root of modulo 229 is 14 29 43  .
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13. We can easily establish that 2 is a primitive root of modulo 13. We need to find

a primitive root of 42 13 57122  . How?

By using Proposition (6.31):

If r is a primitive root of modulo kp then

(a) r is also a primitive root modulo 2 kp provided r is odd.

(b) kr p is a primitive root modulo 2 kp provided r is even.

We need to check that 2r  is a primitive root of modulo 213 . How?

By Lemma (6.24);

Let r be a primitive root of p. Then the order of r modulo 2p is either 1p or

   2 1p p p   .

The order of 2 modulo 213 :

 12 22 40 1 mod 13 

Hence 2 is a primitive root of modulo 13k . Since 2 is even so
42 13 28563  is a primitive root of modulo 42 13 57122 

14. Since 34 2 17  so it has primitive roots because it is of the form 2 kp .

We first find all the incongruent primitive roots of prime 17.

Testing 2 for a primitive root:

We have  17 16  and the only proper factors of 16 are 2, 4 and 8:

 2 4 82 4, 2 16, 2 1 mod 17  

Hence 2 cannot be a primitive root of modulo 17 because  82 1 mod 17 .

Let us now trial 3:

 2 4 83 9, 3 13, 3 16 mod 17  

Hence 3 is a primitive root of modulo 17.

Now we use 3 as a base to find the other primitive roots of 17. Why?

Because by using Proposition (6.18):

Let r be a primitive root of modulo p where p is prime. Then  modmr p is also

a primitive root of modulo p provided  gcd , 1 1m p   .

In our case we have 1 17 1 16p    . The integers below 16 which are

relatively prime to 16 are all odd integers (1, 3, 5, 7, 9, 11, 13 and 15) up to 15

(inclusive).
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 33 10 mod 17

 53 5 mod 17

 73 11 mod 17

 93 14 mod 17

 113 7 mod 17

 133 12 mod 17

 153 6 mod 17

Thus the primitive roots of modulo 17 are  3, 5, 6, 7, 10, 11, 12, 14 .

How do we find the primitive roots of modulo 34?

By using Proposition (6.31):

If r is a primitive root of modulo kp then

(a) r is also a primitive root modulo 2 kp provided r is odd.

(b) kr p is a primitive root modulo 2 kp provided r is even.

The odd integers amongst the above list are 3, 5, 7 and 11 so they are also

primitive roots of modulo 2 17 34  .

For the even integers 6, 10, 12 and 14 we add 17 in each case:

6 17 23 

10 17 27 

12 17 29 

14 17 31 
These are also primitive roots of modulo 34.

The primitive roots of modulo 34 are  3, 5, 7, 11, 23, 27, 29, 31 .

15. We need to show that 3 is a primitive root of 343. First note that 3343 7 .

This is similar to question 14 of the last Exercises (6.4) but this time we use the

theory developed in this section.

You can easily verify that 3 is a primitive root of modulo 7. Then by

Proposition (6.28):

Let r be a primitive root of modulo p where p is an odd prime. Then either r

or r p (or both) is a primitive root of kp where 1k  .
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Either 3 or 3 7 10  is a primitive root of 3343 7 . We want to show that 3

is a primitive root of modulo 343.

Therefore we need to show that the order of 3 modulo 343 is equal to

   3343 7 343 49 294    

The positive divisors of 294 are {1, 2, 3, 6, 7, 14, 21, 42, 49, 98, 147, 294} .

Clearly the indices 1, 2, 3, of base 3 are not going to work. We try the next

index:

63 729 43    1 mod 343

Using this to evaluate the next index 7 gives

7 63 3 3 43 3 129       1 mod 343

Using these results obtained to find the remaining indices (apart from the last

one which we know is going to give us 1 modulo 343 because of Euler’s

Theorem):

 214 7 23 3 129 16641 177      1 mod 343

 321 6 3 33 3 3 43 27 2 146 689 195        1 mod 343 (‡)

42 23 195 38 025 295 48      1 mod 343 (*)

49 42 73 3 3 48 129 6192 325 18         1 mod 343 (**)

   
2 298 493 3 18 324 19        1 mod 343

   147 98 493 3 3 19 18 342 1          1 mod 343

Therefore the order of 3 modulo 343 is  343 294  which implies that it is a

primitive root of modulo 343.

(ii) We are asked to solve the quadratic  2 295 mod 343x  . Using the rules of

indices with respect to the base 3 we have

     3 3
2 295 mod 294ind x ind

From (*) in part (i) we have  3
195 42ind  , substituting this into the above

   3
2 42 mod 294ind x 
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We have 2 incongruent solutions because the  gcd 2, 294 2 and 2 42

       
   

3 3

3

2 42 mod 294 21 mod 147

21, 21 147 21, 168 mod 294

ind x ind x

ind x

  

   

From the last line    3
21, 168 mod 294ind x  we deduce that

 21 1683 , 3 mod 343x 

From (‡) we have  213 195 mod 343x   . Evaluating the other index by using

the the results obtained in part (i) we have

   168 147 213 3 3 1 195 195 148 mod 343x        

The other solution is  148 195 mod 343x   .

Our solutions to the given quadratic  2 295 mod 343x  are

 148, 195 mod 343x 

(iii) We are asked to solve  7 325 mod 343x  . Taking indices to base 3:

     3 3
7 325 mod 294ind x ind

By (**) of part (i) we have  3
325 49ind  . Substituting this gives

     3 3
7 325 49 mod 294ind x ind 

The  gcd 7, 294 7 and 7 49 so we have 7 incongruent solutions to the

given equation. Simplifying this    3
7 49 mod 294ind x  yields

   3
7 mod 42ind x 

By definition of congruence we have

     3 3
7 mod 42 7 42ind x ind x k   

Since we know that we have 7 incongruent solutions so substituting

0, 1, , 6k   gives

           
 

3
7, 7 42, 7 2 42 , 7 3 42 , 7 4 42 , 7 5 42 , 7 6 42

7, 49, 91, 133, 175, 217, 259 mod 294

ind x       



Therefore the solutions are given by

 7 49 91 133 175 217 2593 , 3 , 3 , 3 , 3 , 3 , 3 mod 343x 

Using the results of part (i) for the first two indices we have
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 7 493 129, 3 325 mod 343x   

By using (*) and (**) we can find the next index:

     91 42 493 3 3 48 18 864 178 mod 343x          :

The next index  1333 mod 343 is a bit cumbersome to evaluate, let skip this and

find this at the end. For the next three congruences  175 217 2593 , 3 , 3 mod 343x  we

can use the last computation in part (i) which is  1473 1 mod 343 . Breaking

each of the indices 175, 217 and 259 we have

       2 2175 147 28 143 3 3 1 3 177 31329 227 mod 343x           

     217 147 49 213 3 3 3 1 18 195 3510 80 mod 343x           

     259 147 98 143 3 3 3 1 19 177 3363 276 mod 343x           

Let us now evaluate the one we left earlier:

   133 98 21 143 3 3 3 19 195 177 655 785 31 mod 343x          

Our solutions are  31, 80, 129, 178, 227, 276,325 mod 343x  .

16. Lemma (6.24) claims:

Let r be a primitive root of p. Then the order of r modulo 2p is either 1p or

   2 1p p p   .

Proof.

Let r have order k modulo 2p that is

 21 modkr p (*)

Since    2 1p p p   so by Corollary (6.5):

Let the integer a modulo n have order k. Then  k n .

We have

   2 1k p k p p   (†)

We show that either 1k p  or  1k p p  .

Suppose k dp where d is a proper divisor of 1p then

 21 modk dpr r p 

By the definition of congruence there is an integer m such that

   2 21 mod 1 1dp dpr p r mp mp p     
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From the last calculation we have

 1dpr mp p  implies that    1 mod
p

dp dr r p 

However dr   1 mod p because d is a proper divisor of 1p and we are given

that r is a primitive root of p.

Hence    1 mod
p

dr p is impossible because by Corollary (4.2):

 modpn n p

We have  pdr r   1 mod p . This is clearly a contradiction so k dp where

d is a proper divisor of 1p .

From this k dp we have  gcd , 1k p  .

From (†) we have  1k p p  . Using Euclid’s Lemma (1.13):

If a bc with  gcd , 1a b  then a c .

On  1k p p  gives  1k p  . Required to show that 1k p  .

From (*) we have

 21 modkr p which implies  1 modkr p

We are given that r is a primitive root of p so the lowest index to give 1 modulo

p is 1p , that is  1 1 modpr p  .

By Proposition (6.4):

Let a modulo n have order l. Then  1 modha n l h 

We have  1p k .

In the above we had  1k p  and now  1p k so 1k p  .

Hence either 1k p  or  1k p p  .

The order of r modulo 2p is either 1p or    2 1p p p   .

■

17. The given proposition (6.28):

Let r be a primitive root of modulo p where p is an odd prime. Then either r or

r p (or both) is a primitive root of kp where 1k  .

Proof.

For 1k  we have the given primitive root r of modulo p.
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For 2k  :

The proof of this follows from Theorem (6.27):

Let p be an odd prime. Then there is a primitive root of modulo kp where

1k  .

From the proof of Theorem (6.25) we have:

(I) The primitive root of 2p is the same primitive root r as the odd prime p or

it is r p (or both).

(II) Also from the proof of Theorem (6.27) we showed that the primitive root of

modulo 2p is also a primitive root of kp .

Combining these two results (I) and (II) gives the required result.

■

18. We are asked to show that:

Let p be an odd prime and r be a primitive root of modulo 2p . Then r is a

primitive root of every power of p.

Proof.

In the proof of Theorem (6.27) we showed that the primitive root of modulo 2p

is also a primitive root of kp .

■

19. We are asked to show that kp and 2 kp have the same number of incongruent

primitive roots provided p is an odd prime.

Proof.

By the main propositions in the text we have that both kp and 2 kp have

primitive roots.

By question 18 of the Supplementary Problems on Chapter 6:

If n has a primitive root then it has exactly   n  incongruent primitive

roots.

We show that    2k kp p  .

Since p is an odd prime so  gcd 2, 1kp  . Using the multiplicative property of

the Euler phi function we have

         2 2 1k k k kp p p p         
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Since    2k kp p  so by the above proposition we have that kp and 2 kp

have the same number of incongruent primitive roots.

■

20. We are asked to prove that 2k where 3k  has no primitive roots.

How to we prove this result?

By using the hint which says use mathematical induction on k.

Proof.

Base Case

First we prove there are no primitive roots of integer 32 8 . This is our base

case.

Let r be odd because  gcd , 8 1r  for r to be considered as a primitive root.

Let 2 1r m  where m is an integer.

Now we can evaluate  32 by Proposition (5.4):

   1 1k kp p p  

We have

   3 22 2 2 1 4   

The only proper factor of 4 is 2. Let us check to see that r to the index 2 does

not give 1 modulo 8:

   22 22 1 4 4 1 4 1 1r m m m m m        (*)

Note that  1 evenm m   . Writing  1 2m m n  for some integer n.

Substituting this into (*) gives

     2 4 1 1 4 2 1 8 1 1 mod 8r m m n n       

Since the index 2 of r gives 1 modulo 8 so r cannot be a primitive root of

modulo 8.

Hence 32 8 has no primitive roots.

Induction Hypothesis

Assume the given result is true for k m :
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That is 2m has no primitive roots. This implies that there is a proper factor d of

12m , that is 12md  , such that for all residues r which are relatively prime to

2m we have

 1 mod 2d mr  (*)

Induction Step

Required to prove that 12m has no primitive roots.

By the above Proposition (5.4) we have

 12 2m m  

Let r be a residue which is relatively prime to 12m .

From (*) we have an integer k such that

 1 2d mr k  (‡)

If k is even then we are done because 2k l for some integer l and

   1 11 2 2 1 2 1 mod 2d m m d mr l l r      

Where d is a proper divisor of  12 2m m   because 12md  .

If k is odd, 2 1k n  say, then by substituting this into (‡) gives

    11 2 1 2 2 1 1 2 2d m m m mr k n n       

Writing this 11 2 2d m mr n   as congruence modulo 12m gives

 11 2 mod 2d m mr  

Squaring both sides of this congruence yields

   
   

 
 

2 2

2
2

1 2

1 1

1

1 2

1 2 2 2

1 2 2

1 2 1 2

1 mod 2

d m

d m m

m m

m m

m

r

r


 



 

  

  

  



As d is a proper divisor of 12m therefore 2 2md .

So 2d is a proper divisor of  12 2m m   . Since in the above derivation we

have  2 11 mod 2d mr  so r cannot be a primitive root of modulo 12m .
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Hence by mathematical induction we have 2k where 3k  has no primitive

roots.

■

21. We need to prove that mn has no primitive roots given  gcd , 1m n  .

Proof.

Since we are given that  gcd , 1m n  so      mn m n   .

By Euler’s Theorem (5.14):

   1 mod
n

a n
 

Let    gcd , gcd , 1r m r n  . Then by Euler’s Theorem we have

   1 mod
m

r m
  (*)

   1 mod
n

r n
  (**)

By Proposition (5.10):

 l is an even integer for 2l 

Therefore both  m and  n are divisible by 2.

Raise the congruence in (*) to the power of
 
2

n
:

  
     

 2 2 1 mod

n m n
m

r r m

  
  

Similarly raising the congruence in (**) to the power of
 
2

m
gives

  
     

 2 2 1 mod

m n m
n

r r n

  
  

We have
   

 2 1 mod
m n

r m
 

 and
   

 2 1 mod
n m

r n
 

 .

We need to use the result; that given  1 2
gcd , 1k k  then

 1moda b k and  2moda b k implies  1 2
moda b k k

Therefore applying this to
   

 2 1 mod
m n

r m
 

 and
   

 2 1 mod
n m

r n
 

 gives
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   

 2 1 mod
m n

r mn
 



Hence r cannot be a primitive root of mn .

■

22. We are asked to prove that if r is a primitive root of odd prime p and

  1p
r mp


   21 mod p r mp  is a primitive root of kp

Proof.

By Lemma (6.24):

The  order of r modulo 2p is either 1p or    2 1p p p   .

Since we are given that   1p
r mp


   21 mod p so the order of r mp must

be    2 1p p p   . Therefore r mp is a primitive root of 2p .

By Proposition (6.29):

Let p be an odd prime and r be a primitive root of modulo 2p . Then r is a

primitive root of every power of p.

We have r mp is a primitive root of kp for 1k  .

This completes our proof.

■

23. Required to prove that 2i jn p for 2i  and 1j  has no primitive roots.

Proof.

If 2p  then 2 2i j i jn p   and 3i j  . By result of question 3:

The integer 2k where 3k  has no primitive roots.

Hence 2i jn p has no primitive roots.

If p is odd then  gcd 2 , 1i jp  and    2 2, 2i jp   . So by Proposition

(6.32) (b):

Let 2m  and 2n  such that  gcd , 1m n  then mn has no primitive

roots.

Applying this we have 2i jn p has no primitive roots.

This completes our proof.
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■

24. We need to show that given  1 modmr n then in general m  n .

By the hint let 15n  then with 12m  :

 122 1 mod 15

Also

       15 3 5 3 5 2 4 8         

We have 12m  and 12 8 implies 12  15 .

25. We have shown in question 8 that 2 is a primitive root of 25 25 . Also in

question 8 we showed that 2 5 7  is not a primitive root of modulo 25.

26. See solution to question 14 of the previous Exercises 6.4. Replace the prime p

with n.

27. First we show that 3 is a primitive root of modulo 25 25 . We have already

shown in question 1 that 3 is a primitive root of modulo 25 25 .

By using Proposition (6.31):

If r is a primitive root of modulo kp then

(a) r is also a primitive root modulo 2 kp provided r is odd.

(b) kr p is a primitive root modulo 2 kp provided r is even.

With 2r  and 2 25p  we have 3 is a primitive root of modulo 50.

Also

       2 250 2 5 2 5 1 20 20        

Since 3 is a primitive root of modulo 50 so

 203 1 mod 50 (*)

Let
833 1N   . We want to find the least positive integer x such that

 833 1 mod 50N x  

Note that  88 333 3 so 83 6561 . We have
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 83 35613 1 3 1 mod 50   (**)

Writing the index 3561 as a multiple of 20 and any remainder we have

 3561 178 20 1  

Therefore

     8 178178 20 13 3561 203 3 3 3 3 3 mod 50
    

Putting this result into (*) gives

 833 1 3 1 4 mod 50   

The least positive residue is  4 mod 50x  .


