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SECTION 7.5 Quadratic Residues of Composite Moduli

By the end of this section you will be able to

 distinguish between Jacobi and Legendre symbols

 determine which integers are quadratic residues of composite moduli

7.5.1 Testing Integers of Composite Moduli

The Law of Quadratic Reciprocity – LQR and its corollary are powerful methods to

evaluate the Legendre symbol  /a p where p is an odd prime. Say we wanted to find

 /a n where n is a composite integer. This  /a n cannot be the Legendre symbol

because we need n p where p is an odd prime for the Legendre symbol.

We can use LQR and its corollary but we would have to factorize a and n into its prime

decomposition. For small integers a and n it is smooth enough but what if these integers

are not small?

We extend the Legendre symbol to cover integers a and n where n is any odd integer

greater than 1 and both integers a and n are relatively prime. This generalized Legendre

symbol is called the Jacobi symbol named after Carl Jacobi pronounced Yah Koh Bee.

Figure 16 Jacobi 1804 - 51

He became professor in 1832 but in 1843 he left Könsigberg and went to Italy for health

reasons. However, he was back in Berlin by 1844 and delivered lectures at the

University of Berlin. He died of small box in 1851.

Jacobi was of Jewish origin, actually in order to teach at the

University of Berlin he converted to Christianity in 1825.

He was academically a very bright school child and went to

the University of Berlin in 1821. He excelled in mathematics

as well as in other subjects at the university. He moved to

the University of Königsberg in 1826.

Jacobi made serious contributions to number theory on

topics such as quadratic and cubic residues and elliptic

functions. He also produced research in partial differential

equations and determinants.
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Definition (7.21).

Let a and n be integers where n is an odd integer greater than 1 and  gcd , 1a n  .

Also let 1 2

1 2
mk k k

m
n p p p    be the prime decomposition of n. The Jacobi symbol,

a
n

     
or  a n , is defined by

1 2

1 2

m

mk k k
a a a a
n p p p

                                         
 where

j

a
p

      
is the Legendre symbol.

Example 7.21

Compute the Jacobi symbol  8 15 .

Solution

As 15 is composite so  8 15 is a Jacobi symbol. The prime factorization of 15 is 3 5 .

Applying the above defined Jacobi symbol we have

 

These are now Legendre symbols on the8 8 8 8
right-hand side because 3 and 5 are prime.15 3 5 3 5

2 3
Because 8 2 mod 3   a

3 5

                                                
                

 


 

by Corollary (7.17)

nd  8 3 mod 5

2 5 2 2
Because 5 2 mod 3

3 3 3 3

   
                                                

Using the test for residue 2 from previous sections:

(7.15)
 
 

1 if  1 mod 82

1 if  3 mod 8

p

p p

              

With  3 mod 8p  we have

   8 2 2
1 1 1

15 3 3

                                

There is one hiccup in using the Jacobi symbol, that is if 1
a
n

      
then this does not

imply that a is a quadratic residue of n. Consider the above example, we have
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   8 8 8
1 1 1

15 3 5

                                

The right-hand side    1 1   tells us that there are no solutions to the quadratic

 2 8 mod 3x  and  2 8 mod 5x 

Applying the Chinese Remainder Theorem (3.22) of Chapter 3 to this implies that there

are no solutions to the quadratic congruence    2 8 mod 3 5 8 mod 15x       .

In general if  / 1a n  then a is a quadratic residue of n  all Legendre symbols in

the calculation  / 1a p  where p is an odd prime in the decomposition of n.

If the quadratic congruence  2 modx a n has a solution, then the Jacobi symbol

 / 1a n  . However, if  / 1a n  we cannot conclude that  2 modx a n has a

solution. In the above example we had  8 / 15 1 but there are no solutions to

 2 8 mod 15x  .

In addition, if the Jacobi symbol  / 1a n   then the quadratic congruence

 2 modx a n has no solutions.

7.5.2 Properties of the Jacobi Symbol

Proposition (7.22).

Let n be an odd integer greater than 1. Let a and b be integers relatively prime to n.

We have

(a) If  moda b n then the Jacobi symbol
a b
n n

              
.

(b) The Jacobi symbol
a b a b

n n n

                            
- multiplicative property.

(c) The Jacobi symbol
2

1
a
n

      
.

How do we prove these?

Since we have results about Legendre symbols so we use these but first we need to write

n in its prime decomposition:
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1 2

1 2
mk k k

m
n p p p   

Proof of (a):

By question 24(e) of Exercises 3.1 we have if  moda b n then  mod
j

a b p for

1, 2, ,j m  . As we have  mod
j

a b p so we can use Proposition (7.9) part (a):

     mod impliesa b p a p b p 

Applying the Jacobi symbol as defined in (7.21) we have

1

1 2

2

1 2

1 21 2

1 2

By (7.21)

By (7.9) part (a)

m

m

m

mm

m

k k k

k k k

k k k

a a a a a
n p p pp p p

b b b
p p p

                                                         
                                   






1 2

1

1 2

1

By (7.21)

Because

m

m

m

m

k k k

k k

b

p p p

b
n p p

n


              
             





■
Proof of (b):

Since we need to prove
a b a b

n n n

                            
so we use Proposition (7.9) part (c):

a b a b
p p p

                            

By using this property, we have
j j j

a b a b
p p p

                                
for 1, 2, ,j m  .

Again using the prime factorization of n so that we can apply the above property:

1 2

1 2

1

1 21 2

1 1

By

definition (7.21)

m

m
mm

m

k k k

k k k

k

a b a b a b a b a b
n p p pp p p

a b a
p p p

                                                                 
                          







1 1

rearranging 1 1

By (7.9) part (c)
m

m m

m

m m

k

k k k k

b
p

a a b b
p p p p

a b
n n

                       
                                                                

        

 

By

definition (7.21)

         
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We have
a b a b

n n n

                            
which is our required result.

■
Proof of (c):

Let  modx a n  then  2 2 modx a n so this quadratic congruence has a solution

which implies that  2 / 1a n  . This completes our proof.

■

Example 7.22

Compute the following Jacobi symbols:

(a)
49
15

     
(b)

59
21

     
(c)

12
35

     

Solution

(a) The prime decomposition of 249 7 so we have

2 249 7
1 By above Proposition (7.22) part (c) 1

15 15
a
n

                                

(b) Firstly  59 17 mod 21 so by Proposition (7.22) part (a):

 moda b n implies    / /a n b n

We have
59 17
21 21

              
. The prime decomposition of 21 3 7  . Therefore


 

 By (7.21)

Because  17 2 mod 317 17 17 17 2 3
21 3 7 3 7 3 7 and  17 3 mod 7

By Corolla2 7
3 3

                                                                            
                       

 

ry (7.17)

because  7 3 mod 4

2 1
Because  7 1 mod 3

3 3

2 2 1
1 Because  1  as 1 is a QR

3 3 3

 
 
   

                            
                                         

Now we use the test for residue 2 modulo p:

(7.15)
 
 

1 if  1 mod 82

1 if  3 mod 8

p

p p

              
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We apply this to the above calculation with prime  3 mod 8p  :

 17 2
1 1

21 3

                   

Hence
59 17

1
21 21

               
. Although

59
1

21

      
but  2 59 mod 21x  has no solutions

because from above we have  59 17 17 17
1 1 1

21 21 3 7

                                                   
.

(c) We need to find the Jacobi symbol
12
35

     
. The prime decomposition of 212 2 3 

and 2 and 3 are relatively prime so by Proposition (7.22) part (b):

a b a b
n n n

                            

We have



2

1 by (7.22) part (c)

12 2 3 3 3
1

35 35 35 35 35


                                            
(*)

The prime decomposition 35 5 7  therefore

3 3 3 3
By definition (7.21) of the Jacobi symbol

35 5 7 5 7
By (7.17) because we are now working5 7
with Legendre3 3

                                              
                     

   
   

symbols

2 1
Because 5 2 mod 3   and  7 1 mod 3

3 3

1 1 1 By the calculation of part (b)

 
 
 
  

                             
        

Putting this result
3

1
35

      
into (*) gives

12 3
1

35 35

               
.

In this case we have  12 / 35 1 but the quadratic congruence  2 12 mod 35x  does

not have solutions because of the presence of 1 in the above calculation.

7.5.3 Testing Residues 1 and 2

For the Legendre symbols we stated properties for testing the residues 1 and 2. In the
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same manner we find properties which give us easy ways of testing
1

n

      
and

2
n

     

where 1n  is an odd composite integer. In sight of this we carry out the following

numerical example.

Example 7.23

Compute the Jacobi symbol
1

105

      
. Also determine    1

1
21

n
 with 105n  .

Solution

The prime decomposition of 105 3 5 7   . Using definition of Jacobi symbol (7.21):

1 2

1 2

mk k k

m

a a a a
n p p p

                                         
 where 1 2

1 2
mk k k

m
n p p p   

With 105 3 5 7   we have

1 1 1 1 1
105 3 5 7 3 5 7

                                                          
(‡)

For testing the residue 1 we use Proposition (7.11):

 
 

1 if  1 mod 41

1 if  3 mod 4

p

p p

             

By applying this result with  3, 5 1  and  7 3 mod 4p p p     it follows that

1 1
1, 1

3 5

                 
and

1
1

7

        
respectively.

Substituting these into (‡) gives

   1 1 1 1
1 1 1 1

105 3 5 7

                                                 

Evaluating    1
1

21
n

 with 105n  yields

         
1 1

1 105 1 52
2 21 1 1 1

n 
     

Note that    1
105 1

2
1

1 1
105

         
.

This Jacobi symbol    1
105 1

2
1

1
105

        
is not just true for 105n  but is generally true;
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   1
1

2
1

1
n

n

        
for any odd integer n greater than 1.

Evidently you can see that it is much easier to use the right-hand expression    1
1

21
n



to evaluate the Jacobi symbol  1 / n .

Similarly, we have a result for testing the Jacobi symbol  2 / n .

To prove these general results we need a lemma.

Lemma (7.23).

Let n be an odd integer greater than 1 and its prime decomposition
1

j

m
k

j
j

n p


 . Then

(a)
   

1

1 1
mod 2

2 2

m
j

j
j

p n
k



 


(b)
   

2 2

1

1 1
mod 2

8 8

m
j

j
j

p n
k



 


Proof.

See question 11 of Exercise 7.5.

Proposition (7.24).

Let n be an odd integer greater than 1 then

(a)    1
1

2
1

1
n

n

        
(b)    21

1
8

2
1

n

n

       

Proof of (a). Let the prime decomposition of 1 2

1 2
mk k k

m
n p p p    . Then

     
1 2

1 2 3

1 1 1

2 2 2

1 2 3

1 2

1 1 1 1 1
By the Jacobi symbol definition (7.21)

1 1 1
m

m

p p p

mk k k k

k k
n p p p p

  

                                                             
     
                
         



    

       

 

1 2
1 2

1 2
1 2

1
2

1 1 1
2 2 2

1 1
2 2

1
By q8 of Exercise 7 b 1

1 1 1 By rules of indices

1

m
m

p

y
x xy

m

p p p
k k k

p p
k k

k

p

a a



                                

       

  

 


             
 

        
  

 



 

         1

1
1

2

1

1
2

1

2

By rules of indices    with  1

1 1
1 1 By (7.23) (a) mod 2

2 2

m
m

m
j

j
j

x y x y

mn j

j
j

p
k

p
k

a a a a

p n
k

                 

        




 



     
        
 
 

 



This completes our proof.
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■
Proof of (b): See question 12 of Exercise 7.5.

It is much easier to use this Proposition (7.24) to evaluate the Jacobi symbol  1 n

and  2 n . For example

     
1

1001 1 500
2

1
1 1 1

1001

           

     
21

99 1 1225
8

2
1 1 1

99

           

Now we extend the Law of Quadratic Residues, LQR, to any odd integers greater than

1. In LQR we were restricted to primes p and q.

7.5.4 General Law of Quadratic Reciprocity

We have analogous result for odd integers greater than 1:

The General Law of Quadratic Reciprocity GLQR (7.25).

Let m and n be odd integers greater than 1 and be relatively prime then

 
1 1

2 21
n mn m

m n

                
                

How do we prove this result?

We use our LQR result.

Proof. See question 13 of Exercises 7.5.

Corollary (7.26).

Let m and n be odd integers greater than 1 and be relatively prime. Then

     
   

/ if  1 mod 4   or  1 mod 4

/ if  3 mod 4

n m m nm
n n m m n

              

Proof. See question 5 of Exercise 7.5.

Next, we apply this Corollary to a numerical example.

Example 7.24

Compute the Jacobi symbol
715
291

     
. (Note 291 is composite.)

Solution
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First we use Proposition (7.22) part (a) to reduce our arithmetic calculation:

If  moda b n then
a b
n n

              
.

Since  715 133 mod 291 so by using this proposition we have

715 133
291 291

              

As  133 1 mod 4 so by Corollary (7.26):

     
   

/ if  1 mod 4   or 1 mod 4

/ if  3 mod 4

n m m nm
n n m m n

              

We have
133 291 25
291 133 133

                           
because  291 25 mod 133 . Since 225 5 so

225
1 Because by (7.22) (c) 1

133
a
n

                   

Hence
715

1
291

      
. In this case we have solutions to  2 715 mod 291x  .

Summary

In this section we extend the LQR to cover composite odd integers m and n.

Corollary (7.26) is useful in evaluating Jacobi symbols:

(7.26)
     
   

/ if  1 mod 4   or 1 mod 4

/ if  3 mod 4

n m m nm
n n m m n

              


