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Complete Solutions to Exercises 4.5 
 

1. The Lucas – Lehmer Test is given by: 

The Mersenne number 2 1p
pM    is prime      2 0 modp pS M    where kS  

is defined as the least non – negative residue such that 

0 4S   
 2

1 2 modk k pS S M   for integer 1k  . 

We are asked test 13
13 2 1 8191M     for primality.   

Substituting 13p  , 13 8191M   and 1, 2, 3, , 11k    into the above formula 

gives 

 2 2
1 0 2 4 2 14 mod 8191S S      

 2 2
2 1 2 14 2 194 mod 8191S S      

 2 2
3 2 2 194 2 4870 mod 8191S S      

 2 2
4 3 2 4870 2 3953 mod 8191S S      

 2 2
5 4 2 3953 2 5970 mod 8191S S      

 2 2
6 5 2 5970 2 1857 mod 8191S S      

 2 2
7 6 2 1857 2 36 mod 8191S S      

 2 2
8 7 2 36 2 1294 mod 8191S S      

 2 2
9 8 2 1294 2 3470 mod 8191S S      

 2 2
10 9 2 3470 2 128 mod 8191S S      

 2 2
11 10 2 128 2 0 mod 8191S S      

Since   11 0 mod 8191S   so by the Lucas – Lehmer test we conclude that  
13

13 2 1 8191M     is prime. 

(We have already shown M13 is prime by trying to find primes factors of M13. See 
question 6(a) of Exercises 4.4.) 
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2. We need to find the sigma function for each of the given positive integers. We 
use the multiplicative property of the sigma function to find  n . 

(a) The prime decomposition of 15 is 
15 3 5  . 

Using the multiplicative property of  n  we have 

       15 3 5 3 5         (*) 

How do we find  3  and  5 ? 

Since 3 and 5 are primes so we use Proposition (4.32): 

  1p p    

Therefore  3 4   and  5 6  . Substituting this into (*) yields 

     15 3 5 4 6 24       .    

We can check  15 24   because this result means that the divisors of 15 add up 

to 24: 

 15 1 3 5 15 24       

(b) This time we have to find  77 . Using the same procedure as outlined in 

part (a) we have 

   
   

77 7 11
7 11 8 12 96

 
 

 
    

 

(c)  Since the sum of the digits of 171 is given by  

1 7 1 9    and 9 9 

Therefore 9 is a factor of 171. Hence  
2171 9 19 3 19     

Using the multiplicative property of the sigma function we have 

       2 2171 3 19 3 19         (*) 

Using Proposition (4.35): 

 
1 1

1

k
k pp

p


 


 

We have 

 
2 1

2 3 1 263 13
3 1 2


   


. 

Applying Proposition (4.32): 

  1p p    
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on  19  gives 

 19 19 1 20    .     

Substituting these results  23 13   and  19 20   into (*) gives 

 171 13 20 260     

The sum of all the factors of 171 is 260. 
(d) We are asked to evaluate  200 . Factorizing 200 gives 

3 2200 8 25 2 5     
Applying the multiplicative property of the sigma function we have 

   
     

3 2

3 2

200 2 5
2 5 �

 
 

 
 

 

Using Proposition (4.35) on each of these: 

 
1 1

1

k
k pp

p


 


 

Gives 

 
3 1

3 2 12 15
2 1


  


 and  
3

2 5 1 1245 31
5 1 4

   


. 

Substituting these calculations into  �  yields 

     3 2200 2 5 15 31 465       . 

All the positive factors of 200 sum to 465. 
 
3. (a) We need to prove that n is an abundant number    2n n  . 

Proof. 
(). Let n be an abundant number and 1 2, , , md d d  be the proper factors 

(divisors) of n. By the definition of abundant number we have 

1 2 md d d n     (*) 

By the definition of the sigma function we have 

  1 2

by (*)

2m

n

n d d d n n n n


        . 

(). Assume   2n n   then  

  1 2 1 22m mn d d d n n d d d n             . 

Hence n is an abundant number. 
■ 

(b) Very similar to proof of part (a) but we use the deficient number property: 

1 2 md d d n    . 
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(c) Proof. 
We have already shown n is a perfect number    2n n  . 

Just need to show that if   2n n    n is a perfect number. 

By the definition of the sigma function we have  

   1 2 2mn d d d n n        

where dj are the proper divisors of n. Transposing this equation we have 

1 2 2md d d n n n       

This 1 2 md d d n     implies that n is perfect number. 
■ 

Characterising the numbers given in question 2: 
15 is deficient because  15 24 2 15 30     . 

77 is also deficient because  77 96 2 77    . 

Since  171 260   so 171 is deficient because 260 2 171  . 

200 is abundant because  200 465 2 200    . 

 
4. We need to find  500 . 

The prime decomposition of 2 2 2 3500 100 5 2 5 5 2 5       . 

Since the sigma function is multiplicative and  2 3gcd 2 , 5 1  so 

       
 

2 3 2 3

2 1 3 1 1

500 2 5 2 5
2 1 5 1 11092 Applying  
2 1 5 1 1

k
k pp

p

   


  

   
                             

 

Hence  500 1092  . Adding all the positive factors of 500 gives 1092 which 

means 500 is an abundant number.  
 
5. We need to prove that a prime number is a deficient number. 
Proof. 
Let p be a prime number. By Proposition (4.32): 

We have p is a prime number    1p p   . 

Hence we have  

  1 2p p p    .    

By the previous question part (b) we have p is a deficient number. 
■ 
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6. Consider the even integer 10. Then 

 10 1 2 5 10 18 2 10         

Hence 10 is a deficient even number. 
 
7. By examining the list of the first few perfect numbers given in the main text 
we have 6, 28, 496, 8128 and 33 550 336. Of course the first four perfect numbers 

do obey the rule  
‘There is one perfect number for any given number of digits’ 

However, the next perfect number 33 550 336 has 8 digits so there are no perfect 

numbers with 5, 6 or 7 digits. 
 
8. (a) We need to show that   12 2 1n n   .  

Proof. 
The factors of 2n  are 

1, 2, 22 , , 2n . 

From the definition of the sigma function we have 

  22 1 2 2 2n n      . 

How do we find the sum on the right-hand-side? 
By applying the geometric series formula (4.29): 

 2 1
1

1

n
n

a r
a ar ar ar

r



    


  

Hence  

 
 

2

1
1

2 1 2 2 2
1 1 2 Multiplying numerator

2 1
and denominator by 11 2

n n

n
n






    
          


 

This completes our proof. 
■ 

(b) Very similar proof to part (a) with 2 being replaced by the p. 
 
9. We are asked to prove: 
Every even perfect number N is of the form:  

 12 2 1p pN    where  2 1p   is prime. 

Proof. 
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Let 2sN m  where m is odd and 1s  , be a perfect even number. Since 
2sN m   is a perfect number so  

  12 2 2s sN m m      (�) 

Since m is odd and 2 s  is even so  gcd 2 , 1s m  . Applying the multiplicative 

property of the sigma function we have 

   
   

   1

2
2

2 1 (*) By result of question 8(a)

s

s

s

N m
m

m

 
 



 
 

      

  

Now we consider two cases, m is prime and then m is composite. 
Case I: m is prime 
As m is prime so   1m m   . Substituting this into (*) yields 

     
   

 


1

1

1

By �

2 1
2 1 1
2

s

s

s

N m
m

m

 





  
   


 

From (�) we have   12sN m   so equating the above line to this gives 

     1 1

1

1

1

1

1
1

2 1 1 2
21

2 1
21 1

2 1
11 2 1

2 1

s s

s

s

s

s

s
s

N m m

m m

m

m m

  












    

 


       
         

 

Putting 12 1sm    into 2sN m   gives  12 2 1s sN     which is of the 

requested form  12 2 1p pN   . However we still need to show that s is prime.  

How? 
By question 13 of Exercises 4(c): 

If 2 1n   is prime then n is prime. 

As we are considering 12 1sm    is prime so 1s p   where p is prime and so  

   1 12 2 1 2 2 1s s p pN       

Hence if m is prime we have our required result. 
Case II: m is composite. 
By equating (*) and (�) from above and re-arranging we have 

     1 12 1 2 (**)s sN m m      

From this we have    1 12 2 1s s m   . We have  1 1gcd 2 , 2 1 1s s    . Why? 
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Because 1 12 , 2 1s s    are consecutive integers. 

By applying Euclid’s Lemma (1.13): 

If  a b c  with  gcd , 1a b   then a c. 

to    1 12 2 1s s m    gives  

   1 12 2s sm k m     where k is a positive integer. 

Substituting this  12s k m   into (**) yields 

   1 1 1 1 12 1 2 2 2 1 2 (* * *)s s s s sk m k m k k m             

Since 1s   and  k m  so 1 k m   because m is composite. This means that k is 

a proper divisor of m and so  

   1 any other factors of mm m k m
k

        (�) 

Substituting  12 1sm k   into (**) gives 

       
 

1 1 1

1

2 1 2 2 1
2

s s s

s

N m k
m k

 


  



   


 

From (***) we have 12s k k m   . Putting this into the above line gives 

  12sm k m k        (��) 

This implies that k is the sum of the proper divisors of m. Equating (�) and (��): 

   
 

1 any other factors of 

1 any other factors of 0

mm m k m m k
k
m m
k

       

   
 

This last line is impossible so m cannot be composite. Hence m is prime. 
This completes our proof. 

■ 
 

10. We need to prove: 

We have p is a prime number    1p p   . 

Proof. 
(). Let p be prime. Then the only factors of p are 1 and p, therefore 

  1p p    

(). Assume that   1n n   . Suppose n is composite. Then n has factors 1, n, 

and 0d   say. Therefore we have 

  1 1n n d n       
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This is impossible because we are assuming   1n n   . Hence n cannot be 

composite so it is a prime, that is n p . This completes our proof. 
 
 

11. We are asked to prove: 

Let the prime decomposition of a positive integer n be given by 
1 2 3

1 2 3
mk k k k

mn p p p p      where p’s are distinct primes. 

Then  

           1 2 3 1 2 3
1 2 3 1 2 3

m mk k k k k k k k
m mn p p p p p p p p                 

How do we prove this? 
Use mathematical induction. 
Proof. 
The result is true for 2m  : 

       1 2 1 2
1 2 1 2
k k k kn p p p p        

Why? 
Because by Proposition (4.36): 

       k m k mn p q p q        where p and q are distinct primes. 

Assume the result is true for m s : 

         1 2 3 1 2 3

1 2 3 1 2 3
s sk k k k k k k k

s sp p p p p p p p                   (*) 

Required to prove this for 1m s  : 

         1 11 2 1 2

1 2 1 1 2 1
s ss sk kk k k k k k

s s s sp p p p p p p p     
            

Consider the left-hand-side of this equation and apply Proposition (4.36): 

     
       

1 11 2 1 2

1 1

11 2

2 1 2 1

1 2 1

By (*)

s ss s

ss

k kk k k k k k
s s s s

kk k k
s s

p p p p p p p p

p p p p

  

   

 



 



        

    

 




 

Hence by mathematical induction we have our required result. 
 
 

12. (a) We are asked to show that     3 2 1 1p p p    . 

Proof. 

The divisors of 3p  are 1, p, p2 and p3. Adding these gives 
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 3 2 31p p p p      

Expanding the right – hand side of the given formula yields 

  2 3 21 1 1p p p p p        

Hence, we have our result     3 2 1 1p p p    . 

 
(b) We need to show that      5 2 21 1 1p p p p p p       . 

Proof. 

Like part (a) we have the factors of 5p  are 1, p, p2, p3, p4 and p5. Adding these 
gives 

 5 2 3 4 51p p p p p p        

Expanding  

   2 2 2 3 4 51 1 1 1p p p p p p p p p p            

This completes our proof. 
 

13. (i) We are asked to show that the last digit of 22 k  is either 4 or 6. 
Proof. 
For the last digit we consider modulo 10, we are required to prove that 

 22 4, 6 mod 10k   

We use mathematical induction: 

For 1k   we have  22 4 mod 10 , so our result holds. 

Assume the result is true for k m : 

 22 4, 6 mod 10m    (*) 

Required to prove    2 12 4, 6 mod 10m  . Expanding the left-hand-side: 
 

 
2 1 2 2

2 2 2

2 2
2 2 4 2 4 4, 4 6 6, 4 mod 10

m m

m m

 
       

 

Hence by mathematical induction we have our result;  22 4, 6 mod 10k  . 

■ 
(ii) We need to prove the following: 
For every even perfect number the last digit is either a 6 or 8. 
Proof. 
Since we are interested in the last digit so consider modulo 10.  
By Theorem (4.30): 
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Every even perfect number N is of the form:  

 12 2 1p pN     where  2 1p   is prime. 

If 2p   then we have  22 2 1 6N     . The result is true for the even prime 

2. 
Let p be an odd prime. Then 1p   is even and let 1 2p k  . Therefore by part 
(i) we have 

 1 22 2 4, 6 mod 10p k   .    

Consider each case; (I)  12 4 mod 10p   and (II)  12 6 mod 10p  : 

Case (I) We have  12 4 mod 10p  . Multiplying this by 2 gives 

 12 2 2 2 4 8 mod 10p p     . 

Subtracting 1 from both sides yields 

 2 1 8 1 7 mod 10p     . 

Therefore, evaluating the last digit of  12 2 1p pN    with  12 4 mod 10p  : 

   12 2 1 7 4 8 mod 10p pN       . 

Case (II) We have  12 6 mod 10p  . Multiplying this by 2 gives 

 12 2 2 2 6 2 mod 10p p     . 

Subtracting 1 from both sides yields 

 2 1 2 1 1 mod 10p     . 

Evaluating the last digit of  12 2 1p pN    with  12 6 mod 10p  : 

   12 2 1 1 6 6 mod 10p pN       . 

Hence in either case we have the last digit of  12 2 1p pN     is either 6 or 8. 

This completes our proof. 
■ 

 

14. We need to show    12 2 1 1 mod 9p p    where p is an odd prime. 

Proof. 

First note that  2 1 mod 3 . Since we are given that p is an odd prime so 

1p   is even and we have  
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   112 1 1 mod 3
pp     . 

We can write this as 12 3 1p k    where k is an integer. Therefore 

   12 1 2 2 1 2 3 1 1 6 1p p k k        . 

Hence, we have 

    
 

1

2 2

2 2 1 3 1 6 1
18 9 1 9 2 1

p p k k
k k k k

    
     

 

Therefore, we have our result    12 2 1 1 mod 9p p   . 

■ 
 

15. Theorem (4.28) says: 

If the Mersenne number 2 1p   is prime then  

 1

prime

2 2 1p pN  


 is a perfect number. 

It says that if  12 2 1p pN    then N is a perfect and not that if N is perfect 

then  12 2 1p pN   . In symbolic notation 

 12 2 1p pN    N is a perfect number. 

N is a perfect number   12 2 1p pN   . 

 
16. (a) We need to prove that m N  where 1m   is an abundant number. 
Proof. 
We are given that N is a perfect number. Let 1 2, , , kd d d  be the positive 

divisors of m and 1 2, , , le e e  be the positive divisors of N. Both the d’s and e’s 

are divisors of m N . Since N is a perfect number so 

1 2 2le e e N     

Then  

1 2 1 2 1 2

2

2 2k l k

N

d d d e e e d d d N N


              
  

Then   1 2 2 2kN d d d N N       . By the result of question 3(a): 

n is an abundant number    2n n  . 

We conclude that m N  is an abundant number. 
■ 
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(b) We need to show that 
N
d

 where d is a proper divisor of N is a deficient 

number.  
Proof. 
Let 1 2, , , kd d d  be the positive divisors of N. Since N is a perfect number so  

  1 2 2kN d d d N      . 

We are given that d is a proper divisor of N so jd d  is one amongst the list 

1 2, , , kd d d . WLOG assume 1d d  then  

2 2k
N d d N
d


         

 . 

By the result of question 3(b): 

n is an deficient number    2n n  . 

We conclude that m N  is a deficient number. 
■ 


