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Complete Solutions to Exercise 3.2

1. (a) We are given 5x4 =5x7 (mod 3) and this implies 4 =7 (mod 3) is true
because

4=7=1{mod 3|
(b) In this case we have 9x12=9x8 (mod 6) but is 12 =8 (mod 6) ?
No because 8 =2 (mod 6) and 12=0 (mod 6) so 12 #38 (mod 6) .
(c) Starting with 6 x11=6x7 (mod 8) and cancelling out the 6 gives
11=7 (mod 8) but this last congruence is false because

11=3(mod 8 but 7 =7 (mod 8).

Hence 11 £ 7 (mod 8).
(d) We have 13x21 =13x 7 (mod 26) but clearly 21 # 7 (mod 26]. We do not
have ac = be (mod n) = a=b (mod n) .
(e) We are given 13x31=13x5 (mod 26). Cancelling out the 13’s gives

31=5 (mod 26)

Is this congruent true?
Yes.

(f) If we cancel out the 101’s in the congruence 101 x 35 = 101 x 66 (mod 31) we
get 35 = 66 (mod 31) . Is this congruence 35 = 66 (mod 31) true?

Yes because 35 =4 (mod 31) and 66 =4 (mod 31) )

2. In each case we use Proposition (3.10):

ac = bc (mod n) = a=b [mod 2] where g = gcd(c, n)
9
(a) We need to find z in the following 2z =2 x1 (mod 5) . The
g= gcd(2, 5) =1 so

r=1 (mod 5)



Complete Solutions 3.2 Page 2 of 6

This z =1 (mod 5) implies £ —1 is a multiple of 5 or z —1 = 5¢ where t is any
integer. Therefore, for any integer ¢t we have * =1+ 5t.

(b) We are given the linear congruence 7z =7 x 3 (mod 14) . We first find the
greatest common divisor g of 7 and 14 which is g = gcd(7, 14) = 7. Applying
the above proposition with ¢ = 7 gives
xz?)[modE]ESEl(mon)
7
This congruent z =1 (mod 2) implies z — 1 is a multiple of 2 or
r—1=2t = z=1+2¢

Our solution is z =1+ 2¢ for any integer ¢.

(¢) How do we solve the linear congruence 10z =10 x 12 (mod 6) ¢

First we need to find the greatest common divisor of 10 and 6; ged (10, 6) =2.

Using Proposition (3.10):

ac = be (mod n) = a=b [mod ﬁ] where g = gcd(c, n)
g

gives

10z =10x12 (mod 6) implies z =12 [mod g] =12 (mod 3) =0 (mod 3)

What does x =0 (mod 3) mean?

It means z is a multiple of 3. Therefore » = 3t¢.

An easier way to solve this would be to reduce the congruent from the

beginning because 10 = 4 (mod 6) . Using this we have the equation
4z =4x12=48 =0 mod
We have 2 =0 (mod 6) which means z = 6s = 3(25) = 3t where t = 2s.
Of course, we end up with the same result x =0 (mod 3) which gives = = 3t.
(d) We are given the linear congruence 8z = 8 x5 (mod 48). The
g= gcd(S, 48) — 8.
Applying Proposition (3.10) with ¢ = 8 we obtain

8x58><5(m0d48) = xz5[m0d§]55(mod6)
8
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Therefore t —5 =6t = 2 =54+ 6t. Our solution is £ =5 + 6t .

(e) We can rewrite the given congruence as
3(—x> =3%X5 (mod 21)

Since gcd(S, 21) = 3, therefore we have
3<—m) =3x5 (mod 21) = —x=5 [mod %] = 5(mod 7)

From this —x = S(mod 7) we can multiply both sides by —1 to give
=-5= 2(m0d 7)
Our solution is £ —2 =7t or z =2+ T7t.
(f) We are given —12z =12x7 (mod 108) . The greatest common divisor of 12

and 108 is 12, this means that ¢ = ged (12, 108) =12. Applying Proposition
(3.10) gives

—12m512><7(m0d108) - —g=

2

—

We have —z = 7(mod 9) which is equivalent to x = —7 mod 9) . Our

solution is given by z =24 9¢.
(g) We need to solve 152 =0 (mod 8). Note that ged (8, 15) =1 and

b=7=-1 (mod 8)
Easier to solve 152 = -2 =0 (mod 8) and multiplying both sides by —1 gives
=0 (mod 8)

Hence our solution is z = 8¢ which means the integers x which satisfy

152 =0 (mod 8) are multiples of 8.

3. You should be able to find these examples by trial and error.

(a) 4x3=0 (mod 12) but 4 # 0 (mod 12) and 3#0 (mod 12) :
(b) 7x5=0(mod 35) but 7 0 (mod 35 and 5% 0 (mod 35).

(c) 12x15 =0 (mod 30) but 12 # 0 (mod 30) and 15 0 (mod 30).

4. Similarly for the following result:
axb=0 (mod n) implies a =0 (mod n) or b=0 (mod n)
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We have:
(a) 5x12=0 (mod 6) implies that 12 =0 (mod 6).

(b) 6105 = 0 (mod 35) implies that 105 = 0 (mod 35| .

(c) 84x147 =0 (mod 7) implies that 84 = 0 (mod 7) or 147 =0 (mod 7).

Consider the following:
(8) 105 = 0 (mod 5) then 10 =5 = 0 {mod 5).
(b) 78 x 91 =0 (mod 13) then 78 = 91 =0 (mod 13) .

(c) 85x153 = 0 (mod 17) then 85 =153 = 0 (mod 17).

. We need to prove z° =0 (mod p) gives p ‘ x.

Proof.
Applying Proposition (3.14):

If axb=0 (mod p) where p is prime then a =0 (mod p) or b=0 (mod p).
To 2° =0 (mod p) gives £ =0 (mod p) . From the definition of congruence

xEO(modp) we have p‘ x.

. We are required to prove a’> = b’ (mod p) ==, (mod p)

How do we prove this result?

Again we use Proposition (3.14):
If zxy=0 (mod p) where p is prime then = 0 (mod p) or y=0 (mod p).
Proof
(«). Assume a = +b (mod p) and squaring this gives
o = b (mod p)
(=). From the given congruence a* = b* (mod p) we have
-5 =0 (mod p)

Factorizing the left - hand side gives

(a—b)(a+b)=0(mod p)

Applying the above Proposition (3.14) with z =a—b and y=a+b we have
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Also by the definition of congruence a —b =0 (mod p) and a +b=0 (mod p)

we have
p‘ (a—b) or p‘ (a+b).

This completes our proof.

(a) We can write 25 = 5° and so

x252555252251(m0d3) or x2—1250(m0d3)

Applying Proposition (3.14) (b) to 2* =1 (mod 3) gives

z=1, —1=1, 2(mod 3|

From this z =1 (mod 3) we have x —1 = 3t for any integer . Similarly

=2 (mod 3) gives © —2 = 3s for any integer s. Our general solution is

=143t or x =35+ 2.
where s and ¢ are any integers.

(b) Similarly for #* =100 (mod 11) we can write 100=10" so

~—

[}
Because 10=-1 (mod 11)

2 = 10 = (—1)2 =1 (mod 11)

Applying Proposition (3.14) (b) to z* =1 (mod 11) yields

r=1 —1=1, 1o(mod11)

Let s and t be any integers then the general solution is given by:

r=1 (mod 11) implies z=1411s

z =10 (mod 11) implies x =10411¢

Our general solution is z=1+411s or x =10 +11¢ for any integers s and t.

(i) We need to disprove that if ged (x, n) =1 and 2* = 1(mod n) then

T = j:l(mod n) . How?
By producing a counter example:

Let z =4, n =15 then gcd(4, 15) =1 but



10.
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47 =16 =1(mod 15) and A£ + 1(mod 15)
(ii) The following is a counter example to gcd(m, n) —1 and 22 = a(mod n)
then & = +a(mod n):
2= 10(mod 39) - =719, 20,32 (mod 39)

You may be wondering how we got these solutions. Brute force.

We are asked to show that if a" =0 (mod p) where p is prime then

a=0 (mod p). How do we prove this result?

By mathematical induction.

Proof.

Clearly the result holds for m =1 because we are given a" = 0 (mod p) SO
a15a50<m0dp)
Assume the result is true for n = k , that is
a" =0 (mod p) implies a =0 (mod p) (*)
Required to prove the result for n =k +1 which means we have to show
ad™ =0 (mod p) implies @ =0 (mod p),
Consider a"™ =0 (mod p) . By the rules of indices we have

" =d"xa=0 (mod p)

(
)
To a*"' = af xa =0 (mod p) gives
0 (mod p) or a=0 (mod p)
If @ =0 (mod p) then we are done. If " = 0 (mod p) then by (*) we have
a=0 (mod p)
By mathematical induction we have a" = 0 (mod p) implies a = 0 (mod p).

This completes our proof.



