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Complete Solutions to Exercises 6.3 
 

1. We need to find whether 3 and 5 are primitive roots of 7. How? 
Since 7 is prime so  7 6   and the only positive divisors of 6 are 1, 2, 3 and 6. In 

each case we need to evaluate these indices to the bases 3 and 5. 
(a) We have 

 23 9 3 1 mod 7        

 33 27 6 1 mod 7        

 63 1 mod 7     

 Therefore 3 is a primitive root of 7. 
(b) Checking if 5 is a primitive root of 7: 

 25 25 4 1 mod 7     

 35 4 5 20 6 1 mod 7       

 By Euler’s Theorem we have  65 1 mod 7 . Hence 5 is a primitive root of 7. 

 
2. We are required to find whether 3, 5 and 7 are primitive roots of 11. As 11 is prime 

so  11 10   and the only positive divisors of 10 are 1, 2, 5 and 10. 

(a) Checking whether 3 is a primitive root of 11: 

 23 9 1 mod 11    

 53 243 1 mod 11    

 Therefore 3 is not a primitive root of 11. 
(b) Using similar evaluations for base 5 we have 

 25 25 3 1 mod 11     

 55 3125 1 mod 11    

5 is not a primitive root of 11. 
(c) Repeating the above calculations for 7 we have 

 27 49 5 1 mod 11     

 57 16807 10 1 mod 11     

 By Euler’s Theorem we have  107 1 mod 11 . Hence 7 is a primitive root of 11. 

 



Complete Solutions 6.3       Page 2 of 26 
 

3. We need to show that 2 is a primitive root of 9. How? 
First, we find  9 : 

   2 19 3 9 1 6
3

 
        

.    

The divisors of 6 are 1, 2, 3 and 6. Evaluating these indices with base 2: 

 1 2 32 2 1, 2 4 1, 2 8 1 mod 9      . 

Hence the order of 2 is  6 9  so 2 is a primitive root modulo 9. 

 
4. We are required to show that 5 is a primitive root of 49. We first evaluate  49 : 

   2 2 149 7 7 1 42
7

 
        

. 

The only divisors of 42 are 1, 2, 3, 6, 7 14, 21 and 42. Finding these indices with 
base 5: 

 25 25 1 mod 49    

 35 125 27 1 mod 49     

 65 15625 43 1 mod 49     

 75 78125 19 1 mod 49     

 14 25 19 361 18 1 mod 49      

   321 7 35 5 19 6859 48 1 mod 49       

Hence the order of 5 modulo 49 is  42 49 . Therefore 5 is a primitive root 

modulo 49. 
 

5. This time we need to show that 7 is not a primitive root of 19. Since 19 is prime we 
have  

 19 19 1 18    .      

The divisors of 18 are 1, 2, 3, 6, 9 and 18. Evaluating these indices to the base 7: 

 27 49 11 1 mod 19     

 3 27 7 7 11 7 77 1 mod 19        

Hence the order of 7 modulo 19 is 3 and  19 18 3    so 7 is not a primitive root 

of 19.  
 



Complete Solutions 6.3       Page 3 of 26 
 

6. We first need to find a primitive root of 11. We should first try 2 because it is the 
smallest positive integer after 1. Clearly 1 cannot be a primitive root of 11 because 

 11 1 mod 11 .  

Since 11 is prime we have  11 10   and the only divisors of 10 are 1, 2, 5 and 10. 

 22 4 mod 11   

 52 32 10 mod 11    

The order of 2 modulo 11 is 10 so it is a primitive root of 11. We use 2 as a base to 
find the order of the residues modulo 11. We have 

 
 
 

 
 

 
 
 

 
 

1

2

3

4

5

6

7

8

9

10

2 2 mod 11

2 4 mod 11

2 8 mod 11

2 16 5 mod 11

2 32 10 mod 11

2 10 2 20 9 mod 11

2 9 2 18 7 mod 11

2 7 2 14 3 mod 11

2 3 2 6 mod 11

2 6 2 12 1 mod 11







 

 

   

   

   

  

   

  

Creating a table of indices: 

a 1 2 3 4 5 6 7 8 9 10 

 2ind a   10 1 8 2 4 9 7 3 6 5 

(a) We are required to solve the congruence  42 7 mod 11x  . We convert this 

 42 7 mod 11x   to linear form by taking indices of both sides; 

   4
2 2ind 2 ind 7x  .  

Using the rules of indices of Proposition (6.16): 

(a)         ind ind ind modr r rab a b n    

(b)       ind ind modk
r ra k a n   

(c)     ind 1 0 modr n   and      ind 1 modr r n .  

On    4
2 2ind 2 ind 7x   with  11 10   gives 

       4
2 2 2ind 2 ind ind 7 mod 10x     
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         2 2 2ind 2 4 ind ind 7 mod 10 *x    

From the above table we have    2 2ind 2 1  and  ind 7 7  . Substituting these 

into (*) gives  

   
   

2

2

1 4 ind 7 mod 10

4 ind 6 mod 10

x

x

 


  

The  gcd 4, 10 2  and 2 6  therefore there are 2 solutions. From the last line we 

have 

       
   

2 2

2

4 ind 6 mod 10 2 ind 3 mod 5

ind 4 mod 5

x x

x

  

 
  

From    2ind 4 mod 5x   we have  2ind 4 5x k   where k is an integer. Since 

we have 2 solutions so substituting 0, 1k   gives 

   2ind 4, 9 mod 10x    

Using the above table in reverse direction yields 

 5, 6 mod 11x    

(b) This time we need to solve the quadratic  23 5 mod 11x  . Again we use the 

above table and the rules of indices given in Proposition (6.16) to convert the given 
quadratic into linear form. We have 

     
       
       

2
2 2

2
2 2 2

2 2 2

ind 3 ind 5 mod 10

ind 3 ind ind 5 mod 10

ind 3 2 ind ind 5 mod 10

x

x

x



 

 
  

 By the above table we have    2 2ind 3 8  and  ind 5 4  . Putting these into the 

above derivation yields 

       2 28 2 ind 4 mod 10 2 ind 4 6 mod 10x x     .  

We need to solve this equation    22 ind 6 mod 10x  . The  gcd 2, 10 2  and 

2 6  so we have 2 solutions. Dividing    22 ind 6 mod 10x   by the gcd gives 

   2ind 3 mod 5x  .  

Hence  2ind 3 5x k  . Substituting 0, 1k   gives 

   2ind 3, 8 mod 10x  . 

Using the above table in reverse order yields 
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 8, 3 mod 11x  . 

Our solutions are  3, 8 mod 11x  .  

(c) We are required to solve the congruence  55 6 mod 11x  . We have 

     5
2 2ind 5 ind 6 mod 10x  .  

Using the rules of indices we have 

       
       

         

5
2 2 2

2 2 2

2 2 2

ind 5 ind ind 6 mod 10

ind 5 5 ind ind 6 mod 10

5 ind ind 6 ind 5 mod 10 �

x

x

x

 

 

 
  

By using the table which we established at the start of this question we have 

 2ind 6 9  and  2ind 5 4 .  

Putting these values into (�) gives 

   25 ind 9 4 5 mod 10x    .  

The  gcd 5, 10 5  and 5 5  so we have 5 incongruent solutions to this 

congruence. Dividing by 5 yields    2ind 1 mod 2x  . 

This    2ind 1 mod 2x   implies   2ind 1 2x k   where k is an integer. 

Substituting  0, 1, 2, 3, 4k   gives 

   2ind 1, 3, 5, 7, 9 mod 10x  .  

Using the table again in reverse direction we have 

 
2, 8, 10, 7, 6
2, 6, 7, 8, 10 mod 11

x 
   

 
7. Since 19 is prime so  19 18  .  

(a) We need to solve  56 7 mod 19x  . Converting this to linear form by taking 

ind2  of both sides gives 

     5
2 2ind 6 ind 7 mod 18x  .     

Using the rules of indices gives 

       2 2 2ind 6 5 ind ind 7 mod 18x    (*) 

Evaluating powers of 2; 

 52 32 13 mod 19  ,  62 13 2 26 7 mod 19     
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Therefore  2ind 7 6 . Working out other powers of 2 gives 

 72 7 2 14 mod 19    and  142 14 14 196 6 mod 19    . 

So we have  2ind 6 14 . Putting these  2ind 6 14  and  2ind 7 6  into (*) 

gives 

   
   

2

2

14 5 ind 6 mod 18

5 ind 6 14 8 10 mod 18

x

x

 

    
 

The  gcd 5, 18 1  and of course 1 10  so we have a unique solution. Hence 

     2 25 ind 10 implies   ind 2 mod 18x x   

From    2 ind 2 mod 18x   we have   22 4 mod 19x   .  

(b) We need to solve  94 4 mod 19x  . Using the rules of indices we have 

     
       
       

9
2 2

9
2 2 2

2 2 2

ind 4 ind 4 mod 18

ind 4 ind ind 4 mod 18

ind 4 9 ind ind 4 mod 18 Linear Form

x

x

x



 
     

  

Clearly  2ind 4 2  because  22 4 mod 19 . Substituting this into the above 

derivation gives 

     2 22 9 ind 2 9 ind 0 mod 18x x    .  

The  gcd 9, 18 9  and 9 0  so the given equation has 9 incongruent solutions. 

Dividing    29 ind 0 mod 18x   through by 9 gives 

   2ind 0 mod 2x  .  

Hence  2ind 2x k  where k is an integer. Substituting 1, 2, , 8, 9k    yields 

   2ind 2, 4, 6, 8, 10, 12, 14, 16, 18 mod 18x  . 

Therefore  

  

2 4 6 8 10 12 14 16 18

2
by part (a)

2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2
Multiplying the 

4, 16, 7 , 9, 17, 15, 11, 6, 5, 1 mod 19
previous term by 2 4

x 
 
     

 

Putting the residues into ascending order 

 1, 4, 5, 6, 7, 9, 11, 16, 17 mod 19x  . 

(c) We are required to solve  6 7 mod 19x  . Taking ind2 of both sides gives 



Complete Solutions 6.3       Page 7 of 26 
 

     
      
6

2 2

2 2
by part (a)

ind ind 7 mod 18

6 ind ind 7 6 mod 18

x

x



    

We must find a solution of    26 ind 6 mod 18x  . The  gcd 6, 18 6  and 6 6  

so we have 6 incongruent solutions. Dividing through by 6 gives 

   2ind 1 mod 3x  .  

Hence  2ind 1 3x k   where k is an integer. Since we have 6 solutions so 

substituting 0, 1, 2, 3, 4, 5k   gives  

   2ind 1, 4, 7, 10, 13, 16 mod 18x  .  

Therefore  

 
1 4 7 10 13 16

13

2 , 2 , 2 , 2 , 2 , 2
2, 16, 14, 17, 2 , 5 mod 19 By parts (a) and (b)

x 
    

 

We still need to find  132 mod 19x  . Well  

 13 7 62 2 2 14 7 98 3 mod 19       

Placing these residues into ascending order gives 

 2, 3, 5, 14, 16, 17 mod 19x    

 
8. First we show that 3 is a primitive root of 17. We have  17 16  .   

The divisors of 16 are 1, 2, 4, 8 and 16. Finding the indices of these with base 3: 

 
 

   

2

4 2

28 4 2

3 9 1 mod 17

3 9 81 13 1 mod 17

3 3 13 169 16 1 mod 17

 

   

    

  

Hence 3 is a primitive root of 17 because the order of 3 modulo 17 is  17 16  . 

Evaluating the indices of 3: 

 
 

 
 

 

2

3

4

5

3 3 mod 17

3 9 mod 17

3 9 3 27 10 mod 17

3 13 mod 17

3 13 3 39 5 mod 17





   



   

  

 
   

6

7

3 5 3 15 mod 17

3 2 3 6 11 mod 17
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 83 16 mod 17   

   
   

 
 

 
 

 
 

9

10

11

12

13

14

15

16

3 1 3 3 14 mod 17

3 3 3 9 8 mod 17

3 8 3 24 7 mod 17

3 7 3 21 4 mod 17

3 4 3 12 mod 17

3 12 3 36 2 mod 17

3 2 3 6 mod 17

3 1 mod 17

     

     

   

   

  

   

  



  

Using this information to complete the table: 
a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 3ind a   16 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8 

We use this table to solve the given equations. 

(a) We are given the equation  4 4 mod 17x  . Taking ind3 of both sides gives 

     4
3 3ind ind 4 mod 16x    

 Using the established rules of indices given in Proposition (6.16): 

(a)         ind ind ind modr r rab a b n    

(b)       ind ind modk
r ra k a n   

(c)     ind 1 0 modr n   and      ind 1 modr r n .  

We have  

     3 34 ind ind 4 mod 16x  .  [Linear Form]   

By the above table we have  3ind 4 12 . Substituting this into the above yields 

   34 ind 12 mod 16x  .  

The  gcd 4, 16 4  and 4 12  so we have 4 solutions. Dividing this  

   34 ind 12 mod 16x    

by 4 gives  

   3ind 3 mod 4x  .   

This    3ind 3 mod 4x   implies that  3ind 3 4x k  . As we have 4 solutions so 

substitute 0, 1, 2, 3k   into  3ind 3 4x k  : 



Complete Solutions 6.3       Page 9 of 26 
 

   3ind 3, 7, 11, 15 mod 16x  .  

Finding these numbers in the bottom row and reading the corresponding numbers 
in the top row we have  

 10, 11, 7, 6 mod 17x  .  

Putting these in ascending order of residues we have  6, 7, 10, 11 mod 17x  . 

(b) We need to solve  812 5 mod 17x  . Using ind3 we have 

     
       

8
3

3 3 3

ind 12 ind 5 mod 16

ind 12 8 ind ind 5 mod 16 Linear Form

x

x


     

  

By the above table we have    3 3ind 12 13  and ind 5 5  . Putting this into the 

above derivation yields 

     3 313 8 ind 5 8 ind 5 13 8 8 mod 16x x       .  

The  gcd 8, 16 8  and 8 8  so we have 8 incongruent solutions. Therefore 

       3 38 ind 8 mod 16 ind 1 mod 2x x   .  

Our 8 solutions are  3ind 1 2x k   for 0, 1, , 7k   : 

   3ind 1, 3, 5, 7, 9, 11, 13, 15 mod 16x  .  

Locating these in the bottom row of the table and reading off corresponding entries 
in the top row gives 

 3, 10, 5, 11, 14, 7, 12, 6 mod 17x    

Putting these in order gives 

 3, 5, 6, 7, 10, 11, 12, 14 mod 17x    

(c)  This time we have a very similar equation to part (b) with only the residue on 
the right - hand side is 6 rather than 5. We can use the answer to part (b) to solve 

this  812 6 mod 17x   equation. 

     
       

8
3 3

3 3 3

ind 12 ind 6 mod 16

ind 12 8 ind ind 6 mod 16

x

x



 
  

We have    3 3ind 12 13  and  ind 6 15   so  

     3 313 8 ind 15 8 ind 15 13 2 mod 16x x      .  

This time we have to solve     38 ind 2 mod 16x  . How? 
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First, we check that the  gcd 8, 16 8  divides the right-hand side. However,  

8 2  so the given equation has no solution.  

(d) We are required to solve  5 3 mod 17x  . Using ind3 on this congruence 

     
     

3 3

3 3

ind 5 ind 3 mod 16

ind 5 ind 3 mod 16

x

x




  

By using the above table we have    3 3ind 5 5  and  ind 3 1  . Substituting this 

gives 

 5 1 mod 16x  .         

The  gcd 5, 16 1  and 1 1  so we have a unique solution. Hence our solution is  

 13 mod 16x  .  

 

9. We need to find x the least non-negative residue such that  100 1007 6 mod 17x . 

Taking ind3 of this we get 

     100 100
3 3ind 7 6 ind mod 16x .  

Using the rules of indices established in Proposition (6.16) we have 

       
       

       
 

          

100 100
3 3 3

3 3 3

3 3 3

3 3 3
because 100 4 mod 16

ind 7 ind 6 ind mod 16

100 ind 7 100 ind 6 ind mod 16

100 ind 7 ind 6 ind mod 16

4 ind 7 ind 6 ind mod 16 �

x

x

x

x


 

 
    

    

  

By the table of the previous question, which is duplicated here: 

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 3ind a   16 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8 

We have    3 3ind 7 11  and  ind 6 15  . Putting these into  �  gives 

   34 11 15 4 26 4 10 40 8 ind mod 16x                     .  

We have    3ind 8 mod 16x  . By using the above table in reverse direction 

 16 mod 17x  .  

The least non-negative residue is 16 modulo 17, that is  100 1007 6 16 mod 17 . 
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10. (a) We have to solve  7 3 mod 13x  . Using the given table: 

a 1 2 3 4 5 6 7 8 9 10 11 12 

 2ind a   12 1 4 2 9 5 11 3 8 10 7 6 

Taking ind2 of both sides of  7 3 mod 13x   we have 

     
     

   

2 2

2 2

ind 7 ind 3 mod 12

ind 7 ind 3 mod 12

11 4 mod 12 8 mod 12

x

x

x x





  
  

Our solution is  8 mod 12x  .  

(b) We need to find the remainder of 100 50 995 7 9  after dividing by 13. This means 

solving the equation  100 50 995 7 9 mod 13x  where x is the least non-negative 

residue.  

Applying ind2 of both sides of  100 50 995 7 9 mod 13x  and using the rules of indices 

     
         
         

 
  

 
  

 
        

100 50 99
2 2

100 50 99
2 2 2 2

2 2 2 2

2 2 2 2
Because 100 4 mod 12 50 2 mod 12 99 3 mod 12

ind 5 7 9 ind mod 12

ind 5 ind 7 ind 9 ind mod 12

100 ind 5 50 ind 7 99 ind 9 ind mod 12

4 ind 5 2 ind 7 3 ind 9 ind mod 12 *

x

x

x

x
  



  

  

  

  

By the given table we have 

     2 2 2ind 5 9, ind 7 11 and ind 9 8   .  

Substituting these into (*) gives 

         
   

2

2

4 9 2 11 3 8 ind mod 12

82 10 ind mod 12

x

x

     

 
  

From the given table we have    2ind 10 mod 12x   gives 

 10 mod 13x  .  

Dividing 100 50 995 7 9  by 13 gives remainder 10. 
(c) First, we establish under what conditions the given congruence has solutions.  

We need to find a such that  9 mod 13ax   has solutions. Taking ind2 of this: 

     
     

2 2

2 2

ind ind 9 mod 12

ind ind 9 mod 12 Linear Form

ax

a x


    

  

By the given table  2ind 9 8 . Putting this into the above derivation 
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   2ind 8 mod 12a x  .  

Let  gcd , 12g a . Hence this congruence can only have solutions if 8g . The 

only divisors of 8 are 1, 2, 4 and 8. Therefore we can only have solutions provided  
1, 2, 4, 8g g g g    .     

The integers a which are relatively prime to 12, that is 1g   are 
1, 5, 7 and 11. 

The integers a such that  gcd , 12 2a   are 

2 and 10. 

The integers a such that  gcd , 12 4a   are 

4, 8 

We cannot have  gcd , 12 8a   because 8 12 . 

Summarizing these results, we have solutions if a is 1, 2, 4, 5, 7, 8, 10 and 11.  
The remaining natural numbers below 12 are 3, 6, 9 and 12.  
Hence if 3, 6, 9, 12a   we have no solutions. 

 

11. We need to find a such that  6 8 mod 17ax  . We have already established a table 

for the primitive root 3 of 17 in question 8: 
a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 3ind a   16 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8 

Using ind3 to convert into linear form on the given equation yields 

       
     

       

3 3 3

3 3

3 3

ind 6 ind ind 8 mod 16

ind 6 ind 10 mod 16

6 ind 10 ind mod 16 �

a x

a x

x a

 

 

 
  

The  gcd 6, 16 2  so the equation  �  will only have a solution if  

   3 32 10 ind or 10 ind 2a a k      .  

By examining the bottom row of the table we know this  310 ind 2a k   is 

satisfied if  3ind a  is even: 

 3ind 16, 14, 12, 10, 2, 4, 6, 8a    

Using the table in the reverse direction therefore 

 1, 2, 4, 8, 9, 13, 15, 16 mod 17a  .  
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The integer a must satisfy 1 16a   so  
1, 2, 4, 8, 9, 13, 15, 16a  .  

 
12. For this question we use Proposition (6.17): 

Let n have a primitive root and  gcd , 1a n  . The congruence 

 modmx a n       

has a solution    
   1 modn ga n   where   gcd ,g m n .  

(a) We are given the cubic equation  3 89 mod 197x  . Both 89 and 197 are 

prime so  gcd 89, 197 1 . We also need to evaluate  197  which is equal to 196. 

Let 

 gcd 3, 196 1g   .        

For the given equation to have a solution we have to check that  

 196/1 19689 89 1 mod 197  .  

By Euler’s Theorem (5.14): 
   1 modna n    

The above result  19689 1 mod 197  is true so the given congruence  

 3 89 mod 197x    

is solvable. 
(b) We have the same numbers as part (a) except the index this time is 2 

(quadratic rather than cubic). We have  gcd 2, 196 2g   .  

We must check whether  

 196/2 9889 89 1 mod 197  .  

Let 9889x   then  

     2 1 mod 197 1 mod 197   or  1 mod 197x x x    . 

We only need to check some of the divisors of 98 which are 1, 2, 7, 14, 49, 98 : 

 289 7921 41 mod 197    

 
 

37 2 389 89 89 41 89

68921 89 168 89 14952 177 20 mod 197
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     2 214 789 89 20 400 6 mod 197       

   798 14 789 89 6 279936 196 1 mod 197       

Hence  9889 1 mod 197  therefore the given equation  2 89 mod 197x   is not 

solvable. 

(c) This time we need to check whether  2 197 mod 89x   is solvable. First 

note that  197 19 mod 89  which means we look at the equivalent equation 

 2 19 mod 89x  .  

We have  89 88   and the  gcd 2, 88 2 . By the above Proposition (6.17) the 

equation  2 19 mod 89x   has a solution if and only if  

 88 2 4419 19 1 mod 89  .  

Examining the powers of some of the divisors of 44: 

 219 361 5 mod 89  . 

 
 

511 2

5

19 19 19

5 19 3125 19 10 19 190 12 mod 89

 
       

  

   444 11 419 19 12 20736 88 1 mod 89       

Hence the equation  2 197 mod 89x   has no solutions. 

(d) We need to check if  2 218 mod 111x   is solvable. First note that 

 218 4 mod 111 .  

We see if we can solve the easier equivalent equation  2 4 mod 111x  . How? 

By using Proposition (6.17): 

Let n have a primitive root and  gcd , 1a n  . The congruence 

 modmx a n       

has a solution    
   1 modn ga n   where   gcd ,g m n .  

We need to find  111 . The prime decomposition of 111 is 111 3 37  .  

The Euler totient function  111  is given by 

     111 3 37 2 36 72       .  
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Let  gcd 2, 72 2g   . We need to check whether  

     72/2 72 724 2 2 1 mod 111     .  

We use Euler’s Theorem (5.14): 
   1 modna n    

Since  111 72   so  722 1 mod 111 . Therefore, the given quadratic equation  

 2 218 mod 111x    

is solvable.  
 

13. Again, we use Proposition (6.17): 

Let n have a primitive root and  gcd , 1a n  . The congruence 

 modmx a n       

has a solution    
   1 modn ga n   where   gcd ,g m n .  

 

(a) We have to find the number of solutions of  3 2 mod 29x  . We know that 29 

is prime so  29 28  . The  gcd 3, 28 1  so we have solutions provided 

 28 1 282 2 1 mod 29  .  

 By Euler’s Theorem (5.14): 
   1 modna n    

We have  282 1 mod 29  so  3 2 mod 29x   has solution(s). As  gcd 3, 28 1  

therefore we have a unique solution. 

(b) We have to find the number of solutions of  16 25 mod 29x  . The  

 gcd 16, 28 4 . 

The given equation will have solutions provided 

 28 4 725 25 1 mod 29  .  

We need to find powers of 25. To reduce the arithmetic we note that 

 25 4 mod 29 . 

It is simpler to evaluate    7
4 ? mod 29  : 
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   3
4 64 6 mod 29      

     
   
   

     

7 6

23

2

4 4 4

4 4

6 4
36 4 7 4 28 1 mod 29

    
       

   
        

  

Since    7
4 1 mod 29   so the given equation has solutions. Because 

 gcd 16, 28 4  so we have 4 incongruent solutions to  16 25 mod 29x  . 

 
14. (i) We are asked to show that 3 is a primitive root of modulo 223. First 

 gcd 3, 223 1  so 3 could be a primitive root. We are given that 223 is prime so 

 223 222   and divisors of 222 are {1, 2, 3, 6, 37, 74, 111, 222} . We need to 

evaluate each of these indices {1, 2, 3, 6, 37, 74, 111, 222}  with base 3 and show 

that the last index, 222, is the only one which gives  1 mod 223 . We know this 

index does by Euler’s Theorem. Clearly the first three indices don’t. Computing the 
remaining indices to the base 3 gives 

63 729 60    1 mod 223   

   
 

6 337 6 6 2

3 3

3 3 3 60 3 60 3

3600 3 32 3 32 768 3
210 3 630 184 39

     

     
         1 mod 223 �

 

   2 274 373 3 39 1521 183 40         1 mod 223   (*) 

     111 74 373 3 3 40 39 1560 222 1 mod 223           (**) 

 Hence 3 is a primitive root of modulo 223.  

 (ii) We are asked to solve  2 183 mod 223x  . Taking indices of both sides to the 

base 3 gives     3 32 ind ind 183 mod 222x  . From (*) we have 

 3ind 183 74 . 

Substituting this  3ind 183 74  into     3 32 ind ind 183 mod 222x   gives 

   32 ind 74 mod 222x  . 

The  gcd 2, 222 2  and 2 74  so there are two incongruent solutions to the given 

quadratic. We can divide both sides of the above congruence by 2: 
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       3 3ind 37 mod 111 ind 37, 37 111 37, 148 mod 222x x      

The x values are given by  

 37 1483 , 3 mod 223x   

We computed the first of these in part (i) (�): 

 373 184 mod 223x    

By Proposition (3.14) (b) we have 

 2 2 moda b p     moda b p   

This says that if  184 mod 223x   is a solution then so is  

 184 39 mod 223x   . 

Our solutions are  39, 184 mod 223x   to the quadratic  2 183 mod 223x  . 

We also need to solve the Diophantine equation 2 183 223x y  . The given 

congruence  2 183 mod 223x   means that 2x  is 183 more than a multiple of 223; 

that is 2 183 223x y  . Using the solution 39x   gives 
2

2 39 18339 183 223 6
223

y y       

Hence 39, 6x y   is a solution. Another solution can be obtained by 

substituting 184x   which gives 
2

2 184 183184 183 223 151
223

y y       

Therefore 184x  , 151y   is also a solution.  

(iii) This time we have to solve the cubic  3 1 mod 223x  . The procedure is 

identical to part (ii). Taking indices gives  

    3 33 ind ind 1 mod 222 Linear Formx        

From (**) of part (i) we have  

 3ind 1 111  . 

Substituting this into the above congruence yields 

   33 ind 111 mod 222x   

The  gcd 3, 222 3  and 3 111 therefore the cubic congruence has three  

incongruent solutions. Simplifying    33 ind 111 mod 222x   gives 

   3ind 37 mod 74x    
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By the definition of congruence we have  3 37 74ind x k   where k is an integer. 

Substituting 0, 1, 2k   into this yield 

     3ind 37, 37 74, 37 2 74 37, 111, 185 mod 222x     . 

Our three solutions are given by  

 37 111 1853 ,3 , 3 mod 223x   

The first two have been evaluated in part (i) by (�) and (**): 

 37 1113 ,3 184, 222 mod 223x    

Just need to compute the last index 185 to the base 3: 

     185 111 743 3 3 1 40 40 mod 223x          

Our solutions to  3 1 mod 223x   are  40, 184, 222 mod 223x  . 

To solve the Diophantine equation, we have  3 1 mod 223x   which implies that 
3x  is one less than a multiple of 223 so  

3 223 1x y    

Transposing this we have 
3 1
223

xy  . Substituting 40, 184, 222x   into this gives 

340 1 287
223

y    

3184 1 27 935
223

y    

3222 1 49 063
223

y    

Our solutions are  40, 287x y  ,  184, 27 935x y   and 

 222, 49 063x y  .  

 
15. (a) We are asked to show that    1 indr a n  . 

Proof. 
We are given that r is a primitive root of n. Therefore, the order of r is  n . The 

integer a is relatively prime to n so  
   ind modr ar a n .  

The integer a is a member of the reduced residue system modulo n therefore the 
index of r which generators a must be  n . Hence    1 indr a n   which is 

our required result. 
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■ 
(b) We need to show that Proposition (6.16) part (c): 
Proof. 

Need to prove     ind 1 0 modr n   and     ind 1 modr r n : 

By (6.13): 
   ind modr ar a n   

We have 
   ind 1 1 modrr n .      

Also  0 1 modr n . Equating these we have  
   ind 1 0 modrr r n . 

Applying Proposition (6.6) to this gives 

    ind 1 0 modr n . 

For     ind 1 modr r n  is Proposition (6.14). 

■ 
 

16. The given equation  67 6 mod 13x   is the same as the one in Example 19 but we 

are asked to use the primitive root 7 modulo 13: 

 
 

1

2

7 7 mod 13

7 49 10 mod 13



 
 

 
 

3

4

7 10 7 70 5 mod 13

7 5 7 35 9 mod 13

   

   
  

 
 

5

6

7 9 7 63 11 mod 13

7 11 7 77 12 mod 13

   

   
  

   
 
 

7

8

9

7 1 7 7 6 mod 13

7 6 7 42 3 mod 13

7 3 7 21 8 mod 13

     

   

   
  

 107 8 7 56 4 mod 13      

 
 

11

12

7 4 7 28 2 mod 13

7 1 mod 13

   


  

The table for primitive root 7 is: 
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a 1 2 3 4 5 6 7 8 9 10 11 12 

 7ind a   12 11 8 10 3 7 1 9 4 2 5 6 

 

For  67 6 mod 13x   we have  

       7 7 7ind 7 6 ind ind 6 mod 12x  . 

Using this table to find  7ind 7  and  7ind 6  gives 

   
   

7

7

1 6 ind 7 mod 12

6 ind 6 mod 12

x

x

 


  

Again the  gcd 6, 12 6  and 6 6  which means we have 6 incongruent solutions.  

Simplifying the above equation    76 ind 6 mod 12x   yields  

   7ind 1 mod 2x  . 

Recall that    7ind 1 mod 2x   implies   

 7ind 1 2x k   where k is an integer. 

Substituting 0, 1, 2, 3, 4, 5k   gives    7ind 1, 3, 5, 7, 9, 11 mod 12x  . Using 

the table in reverse direction by finding these residues in the bottom row of the table 
and reading off corresponding entries in the top row: 

 7, 5, 11, 6, 8, 2 mod 13x    

Writing these in ascending order gives  2, 5, 6, 7, 8, 11 mod 13x  . Of course, these 

are the same solutions as we found in Example 19 but we used the primitive root 2 
modulo 13 in that example.  
You may have noticed that using a larger primitive root 7 rather than 2 involved 
evaluating powers of 7 rather than powers of 2. It is simpler to use a lower base as 
long as it is a primitive root of n. 
We also need to find solutions to the non – linear Diophantine equation  

67 6 13x y   
Substituting the above x values 2, 5, 6, 7, 8 and 11 into this gives 

6 448 67 2 448 6 13 34
13

y y         

6
109 375 6

7 5 109 375 6 13 8413
13

y y
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6
326 592 6

7 6 326 592 6 13 25 122
13

y y


        

6
5 764 801 6

7 7 823 543 6 13 63 349
13

y y


        

6
1 835 008 6

7 8 1 835 008 6 13 141 154
13

y y


        

6
12 400 927 6

7 11 12 400 927 6 13 953 917
13

y y


        

Our solutions are  2, 34x y  ,  5, 8413x y  ,  6, 25 122x y  , 

 7, 63 349x y  ,  8, 141 154x y    and  11, 953 917x y  . 

 

17. We are given that 2 is a primitive root of modulo 37. Solving  14 27 mod 37x   by 

using index base 2 we have 

    
      

14
2 2

2 2

ind ind 27 mod 36

14 ind ind 27 mod 36 �

x

x



 
 

We must find the index m in  2 27 mod 37m  . Evaluating powers of 2: 

 
 

5

6 5

2 32 5 mod 37

2 2 2 5 2 10 27 mod 37

  

       
  

Therefore  2ind 27 6  and substituting this into the above  �  yields 

   214 ind 6 mod 36x   

The  gcd 14, 36 2  and 2 6  so we have 2 incongruent solutions. Simplifying this 

congruence we have 

   27 ind 3 mod 18x  .    

By inspection 7 3 21   so    2ind 3, 3 18 3, 21 mod 36x    . Therefore 

 3 21 212 , 2 8, 2 mod 37x    

Evaluating  212 mod 37  gives 

       4 4 221 5 22 2 2 5 2 25 2 12 2 144 2 288 29 mod 37               

Hence our solutions are  8, 29 mod 37x  . 

 

18. We are required to prove that   1ind 1
2r

pp    where r is a primitive root of p. 
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Proof. 
We are given that r is a primitive root of a prime p therefore 

 1 1 modpr p  . 

We can write 
1 1

1 2 2
p p

pr r r
 

  : 

 
21 1 1

1 2 2 2 1 mod
p p p

pr r r r p
  


      

.  

By Lemma (4.3): 

 2 1 modx p       1 modx p    

Applying this Lemma to the above equation  
21

2 1 mod
p

r p
     

 yields 

   
1 1

2 21 mod or 1 mod
p p

r p r p
 

  . 

We cannot have  
1

2 1 mod
p

r p


 . Why not? 

Because r is a primitive root of p so the smallest index to give 1 modulo p is 1p  . 
Therefore we must have  

 
1

2 1 mod
p

r p


 .     

Also note that  1 1 modp p    so rewriting this  
1

2 1 mod
p

r p


  as 

 
1

2 1 mod
p

r p p


  .  

Hence by definition of index we have   1ind 1
2r

pp   . 

This completes our proof. 
■ 

 

19. We are required to prove that  modmx a p  has a solution    

 
1

1 mod
p
ga p


  where  gcd , 1g m p  .  

How do we prove this result? 
We use Proposition (6.17): 

Let n have a primitive root and  gcd , 1a n  . The congruence 

 modmx a n       

has a solution    
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   1 modn ga n   where   gcd ,g m n .  

Proof. 
Using this proposition with n p  gives us our result because  

  1p p   .  

So  modmx a p  has a solution      
1

1 mod
p

p g ga a p


   where 

 gcd , 1g m p  . This is our required result. 

■ 
 

20. We are asked to prove that: 

Let  gcd , 1r n   and  1 2 3, , , , nr r r r  be integers relatively prime to n. If r is a 

primitive root of n, then  
 2 3, , , , nr r r r        

are congruent modulo n to  1 2 3, , , , nr r r r  in some order.  

Proof. 

The given   1 2 3, , , , nr r r r  is a reduced residue system modulo n. We need to 

show that the set   2 3, , , , nr r r r   is also a reduced residue system. How? 

Show two things;  

1)   2 3, , , , nr r r r   is incongruent. 

2)   gcd , 1jr n   for  1, 2, 3, ,j n  .  

Step 1 
We need to show that any two residues of the form rj where  1, 2, ,j n   are 

incongruent modulo n. 
Suppose any two residues of this form are congruent modulo n: 

 modj mr r n .  

By applying Proposition (6.6): 

Let the integer a modulo n have order k. Then  

 modj ma a n       modj m k .  

We have   modj m n  because r is a primitive root so its order is  n . We 

have j m  because  , 1, 2, 3, ,j m n  . This means that the set  
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  2 3, , , , nr r r r   is incongruent modulo n. 

Step 2 

Since  gcd , 1r n   so  gcd , 1jr n   for  1, 2, 3, ,j n  .  

Hence the set   2 3, , , , nr r r r   satisfies both conditions for a reduced residue 

system.  

Therefore, the elements in this set     2 3, , , , modnr r r r n  are congruent 

    1 2 3, , , , modnr r r r n  in some order. 

This completes our proof. 
■ 

 
21. We are asked to prove the following: 

Let n have a primitive root and a and n be relatively prime. The congruence 

 modmx a n  

has a solution      1 modn ga n   where   gcd ,g m n . Additionally, 

there are exactly g incongruent solutions. 

Proof. 
Let r be a primitive root of modulo n. Consider the given non – linear congruence 

 modmx a n . Taking indices to the base r of this congruence 

      ind ind modm
r rx a n .  

Using the rules, we have  

      ind ind modr rm x a n   (*) 

This (*) is now a linear congruence so applying Proposition (3.15): 

The congruence  modax b n  has a solution   g b  where  gcd ,g a n . 

We have       ind ind modr rm x a n  has a solution    rg ind a  where 

  gcd ,g m n . By Proposition (3.16): 

 modax b n  has g incongruent solutions provided g b  where  gcd ,g a n  

We have g incongruent solutions of (*). Let  rind a m  then by the definition of 

index we have  

 modmr a n   
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Taking this congruence  modmr a n  to the power 
 n
g


 gives 

 
   

 mod
nn

m ggr a n


  

Since we are given that   gcd ,g m n  so there is an integer k such that  

gk m   

Substituting this into the left – hand side of the above  
   

 mod
nn

m ggr a n


 : 

 
 

 
 


 

    
 
 

By the rules
of indices

1 1 mod
n nn n kgk k n nm gk kg gg gr r r r r a n

  
          

Hence, we have our result 
 

 1 mod
n
ga n



 . This completes our proof. 

■ 
 

22. (a) We are asked to show that  

 2 1 modx p  has solutions    1 mod 4p  . 

 How do we prove this result? 
 We use Proposition (6.17): 

Let n have a primitive root and a and n be relatively prime. The congruence 

 modmx a n       

has a solution      1 modn ga n   where   gcd ,g m n . 

Proof. 

We are given that p is an odd prime. Let   gcd 2,g p   then 

    gcd 2, gcd 2, 1 2g p p    . By Proposition (6.17) we have  

 2 1 modx p  has solutions    
 

   
1

21 1 1 mod
p p
g p

 

    . 

From the last part we have  

     
1

2 11 1 mod 2 1 4 1 mod 4
2

p pp k p k p
          . 

We have our result  2 1 modx p  has solutions    1 mod 4p  . 

■ 
(b) Similar to part (a) but we need to consider two gcds.  

We need to show that  4 1 modx p   has solutions  1 mod 8p  . 
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Proof. 

We are given that p is an odd prime. Let   gcd 4,g p   then 

 gcd 4, 1g p  . By Proposition (6.17) we have  

 4 1 modx p   has solutions       1
1 1 mod

p g
p


  .  

We are given that p is odd so 1p  is even therefore  

 gcd 4, 1 2 or 4g p    

Suppose  gcd 4, 1 2g p    then 1 2p k   where k is odd (if k was even then 

4g  ). Substituting this 1 2p k   into the above     1
1 1 mod

p g
p


   yields  

         1 2 2

because  is odd

1 1 1 1 mod
p g k k

k

p


        

Therefore 4g   and we have  

 4 1 modx p   has solutions       1 4
1 1 mod

p
p


   

From the last part we have  

      1 4 11 1 mod 2 1 8 1 mod 8
4

p pp k p k p
           

We have our result  4 1 modx p   has solutions    1 mod 8p  . 

■ 
 

 


