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Complete Solutions to Supplementary Problems 6 
 

1. In each case we use corollary (6.5): 

Let the integer a modulo n have order k, then  k n .  

(a) Since 7 is prime so  7 6  . The divisors of 6 are 1, 2, 3 and 6.  

We need to check each of these indices to 3 modulo 7. Clearly 1 is not going to 

be the order because  13 3 mod 7  and by Euler’s theorem we have 

 63 1 mod 7 . So checking the remaining two integers gives 

 23 9 2 mod 7   and  33 27 6 mod 7  . 

Hence the order of 3 modulo 7 is 6. 
(b) This time we are asked to work with modulo 13. The Euler phi function of 
13 is 12 because 13 is prime. The divisors of 12 are 1, 2, 3, 4, 6 and 12. Again 
not bothering with the last and first of these integers as indices and checking 
the others gives 

   2 33 9 mod 13 , 3 27 1 mod 13   . 

Hence the order of 3 modulo 13 is 3. 
(c) We know that 23 is prime so  23 22   and the divisors of 22 are 1, 2, 11 

and 22: 

   2 113 9 mod 23 , 3 177147 1 mod 23   . 

The order of  3 mod 23  is 11. 

(d) Similarly we have 

 29 28  .    

The divisors of 28 are 1, 2, 4, 7, 14 and 28. 

       2 4 7 143 9 mod 29 , 3 23 mod 29 , 3 12 mod 29 , 3 28 mod 29    . 

By Euler’s theorem we have  283 1 mod 29 . Hence the order of  3 mod 29  is 

28. 
Clearly by the above results, 3 is a primitive root of 7 and 29. 
 

2. (i) The order of 5 modulo 31 is found by first evaluating Euler’s phi function of 
31: 

 31 30 Because 31 is prime       
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The divisors of 30 are 1, 2, 3, 5, 6, 10, 15 and 30. Checking these integers as 
indices of 5 modulo 31 gives: 

   2 35 25 mod 31 , 5 125 1 mod 31   . 

Therefore, the order of  5 mod 31  is 3. 

(ii) We are asked to find the least non-negative residue x modulo 31 in 

 10005 mod 31x . 

By part (i) we have the order of  5 mod 31  is 3. We need to write the index 

1000 as a multiple of 3 plus any remainder. By the division algorithm 

 1000 333 3 1  . 

Substituting this  1000 333 3 1   into the above index gives 

     333333 3 11000 3 3335 5 5 5 1 5 5 mod 31      . 

We have  10005 5 mod 31 . 

 
3. The Euler totient function  100 40  . The divisors of 40 are 1, 2, 4, 5, 8, 10, 

20 and 40. The order of 7 modulo 100 will be one of these integers. We have 

 2 3 47 49 , 7 343 43, 7 2401 1 mod 100     .   

Hence the order of  7 mod 100  is 4.  

The last two digits of 10037  is given by the least non-negative residue 

 mod 100x  which satisfies  

 10037 mod 100x . 

Writing the index 1003 as a multiple of 4 plus remainder because 4 is the order 

of  7 mod 100 : 

 1003 250 4 3    .   

We have  
     250250 4 31003 4 3 250 3 37 7 7 7 1 7 7 43 mod 100        . 

The last two digits of 10037  are 43. 
 

4. We need to find the order of  10 mod 37 . Since 37 is prime so  

 37 36  . 
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The divisors of 36 are 1, 2, 3, 4, 6, 9, 12, 18 and 36. One of these integers is the 

order of  10 mod 37 : 

   2 310 100 26 mod 37 , 10 1000 1 mod 37    . 

Thus, the order of  10 mod 37  is 3. 

The inverse of  10 mod 37  is  210 26 mod 37  because  

   210 10 1000 1 mod 37  . 

We also need to solve  10 21 mod 37x  . Multiplying both sides of this 

congruence by 26 (as this is the inverse) gives 

 
 

26 10 26 21 mod 37

546 28 mod 37

x

x

  
 

 

 
5. We are given the following table in the question: 

a 1 2 3 4 5 6 7 8 9 10 11 12 

 2ind a  12 1 4 2 9 5 11 3 8 10 7 6 

We use the following rules of indices given in Proposition (6.16): 

(a)         ind ind ind modr r rab a b n   

(b)       ind ind modk
r ra k a n  

(c)     ind 1 0 modr n   and      ind 1 modr r n  

(i) We are asked to solve  75 1 mod 13x  . Applying indices to both sides gives   

     
       

7
2 2

2 2 2

ind 5 ind 1 mod 12

ind 5 7 ind ind 1 mod 12 Linear Form

x

x


           

  

By the above table we have  2ind 5 9  and  2ind 1 12 . Putting these values 

into the above derivation gives 

   
   

2

2

9 7 ind 12 mod 12

7 ind 3 mod 12

x

x

 


 

The  gcd 7, 12 1  so we have a unique solution. By inspection the solution is 

   2ind 9 mod 12x   

Using the above table in reverse order we have  
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 5 mod 13x   

Hence our solution is  5 mod 13x  . 

(ii) Let  mod 13y  be the multiplicative inverse of  5 mod 13  then 

 5 1 mod 13y   which implies  75 mod 13y   by part (i) 

Evaluating this gives  

 75 8 mod 13y      

The inverse of  5 mod 13  is  8 mod 13 . 

(iii) We are asked to solve  78 12 mod 13x  . We can be smart about solving 

this. Note that  128 5, 1 mod 13    and substituting these gives us the 

equation  

    7 7

Multiplying by 1

5 1 mod 13 5 1 mod 13x x


     

We solved this  75 1 mod 13x   in part (i) and the solution is  5 mod 13x  . 

(iv) We have more or less the same congruence as part (iii) but this time the index 
is 6. By applying indices, we have the linear form; 

   26 ind 3 mod 12x  . 

The  gcd 6, 12 6  but 6 3  so the given equation has no solution. 

(v) Similarly we have  

   28 ind 3 mod 12x  . 

The  gcd 8, 12 4  and 4 3  therefore  88 12 mod 13x   has no solution. 

 
6. We fill in the given table by evaluating powers of 5 modulo 23: 

 

 

1 2 3 4

5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22

5 5, 5 25 2 mod 23 , 5 125 10, 5 10 5 50 4,
5 4 5 20, 5 100 8, 5 8 5 40 17,
5 16, 5 11, 5 9, 5 22, 5 18, 5 21, 5 13,
5 19, 5 3, 5 15, 5 6, 5 7, 5 12, 5 14

and 5 1 mod 23

        
        
      
      



 

Hence 5 is a primitive root of 23. 
Putting these into the table gives 
 



                          Complete solutions to Supplementary Problems 6   Page 5 of 20 

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 5ind a  22 2 16 4 1 18 19 6 10 3 9 20 14 21 17 8 

 
a 17 18 19 20 21 22 

 5ind a  7 12 15 5 13 11 

 

(a) We are asked to solve  12 4 mod 23x  . Using the rules of indices we have 

     
      
12

5 5

5 5
By the above table

ind ind 4 mod 22

12 ind ind 4 4 mod 22

x

x



   

The  gcd 12, 22 2  and 2 4  so we have two incongruent solutions. 

 Applying Proposition (3.10) of chapter 3: 

If  modac bc n   then mod na b
g

      
 where  gcd ,g c n . 

 To    512 ind 4 mod 22x   with 2g   gives 

   56 ind 2 mod 11x   which implies    5ind 4 mod 11x  . 

 So we have    5ind 4 mod 11x   and our two solutions are given by  

   5ind 4, 11 4 4, 15 mod 22x    . 

Reading these entries in the bottom row of the above table and finding the 
corresponding integers in the top row we have 

 4, 19 mod 23x  .   [  4 mod 23 ] 

(b) Now we are asked to solve  107 2 mod 23x  . Again using indices we have 

     
       

10
5 5

5 5 5

ind 7 ind 2 mod 22

ind 7 10 ind ind 2 mod 22

x

x


    

  

Using the above table gives  

   
   

5

5

19 10 ind 2 mod 22

10 ind 2 19 17 5 mod 22

x

x

 
   

 

What is the solution of    510 ind 5 mod 22x  ? 

There are no solutions to this congruence because  gcd 10, 22 2  and  

2 5 . Hence we have no solution. 
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(c) We are asked to solve  119 14 mod 23x  . Taking indices gives 

     
       

11
5 5

5 5 5

ind 9 ind 14 mod 22

ind 9 11 ind ind 14 mod 22

x

x


     

 

By the above table we have 

       
     

5 5 5

5 5

ind 9 11 ind ind 14 mod 22

10 11 ind 21 11 ind 21 10 11 mod 22

x

x x

     
         

 

The  gcd 11, 22 11  and 11 11  so we have 11 incongruent solutions. By 

using Proposition (3.10) of chapter 3: 

If  modac bc n   then mod na b
g

      
 where  gcd ,g c n . 

On    511 11 mod 22ind x   gives 

   5 1 mod 2ind x  . 

Our solutions are of the form 2 1k  [odd integer] where k is 0, 1, 2, 3, … and 10 
because we have 11 solutions: 

   5 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 mod 22ind x  . 

Using the table in reverse order gives 

 

 

5 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21
5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14

Putting them in 
5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22 mod 23

ascending order

ind x
x



 
   
  

 

(d) Now we are asked to solve  11 5 mod 23x  . Again using the rules of 

indices highlighted in the previous question yields 

     
 

5 511 5 mod 22

9 1 mod 22

x ind ind

x




 

This equation has a unique solution because  gcd 9, 22 1  and 1 1 . By trial 

and error we have our unique solution  5 mod 22x  .  
 

7. (a) We are asked to find the least non-negative residue  mod 23x  such that  

 69 706 7 mod 23x . 

 Using the rules of indices indices given in Proposition (6.16): 
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(a)         ind ind ind modr r rab a b n   

(b)       ind ind modk
r ra k a n  

(c)     ind 1 0 modr n   and      ind 1 modr r n  

On  69 706 7 mod 23x  gives 

     
       
       

69 70
5 5

69 70
5 5 5

5 5 5

ind 6 7 ind mod 22

ind 6 ind 7 ind mod 22

69 ind 6 70 ind 7 ind mod 22

x

x

x



 

 
 

Using the above table in solution to the previous question we have 

     
     

   

5 5 5

5

5

69 ind 6 70 ind 7 ind
69 18 70 19 ind

ind 2572 20 mod 22

x
x

x

 
   

 
 

Locating the residue 20 in the bottom row of the table and reading off the 
corresponding value in the top row we have 

 12 mod 23x  . 

Hence  69 706 7 12 mod 23 . 

(b) This time we are asked to find  666 100 10009 11 17 mod 23x  . Like part (a) we 

have 

   
       

666 100 1000
5 5

5 5 5

ind ind 9 11 17
666 ind 9 100 ind 11 1000 ind 17 *

x 
  

 

Looking up at the table of the previous question to evaluate  

     5 5 5ind 9 , ind 11 and  ind 17  

We have      5 5 5ind 9 10, ind 11 9 and  ind 17 7   . Substituting these into 

(*) yields  

       
     

 

5 5 5 5ind 666 ind 9 100 ind 11 1000 ind 17
666 10 100 9 1000 7

14560 18 mod 22

x   
     
 

 

Again using the table in reverse order gives 

 6 mod 23x  . 

Hence  666 100 10009 11 17 6 mod 23 . 
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8. This question is very similar to the previous question. We use the given table: 
a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

 2ind a
 

18 1 13 2 16 14 6 3 8 17 12 15 5 7 11 4 10 9 

(a) We are given   100 100 100 1005 7 8 9 mod 19x  . Using the rules of indices given in 

Proposition (6.16): 

(a)         ind ind ind modr r rab a b n   

(b)       ind ind modk
r ra k a n  

(c)     ind 1 0 modr n   and      ind 1 modr r n  

On  100 100 100 1005 7 8 9 mod 19x   yields 

         
          

2 2 2 2 2

2 2 2 2
Factorizing

ind 100 ind 5 100 ind 7 100 ind 8 100 ind 9

100 ind 5 ind 7 ind 8 ind 9 mod 18

x                             
      

 

Using the above table to evaluate these indices gives 

         

 

2 2 2 2 2ind 100 ind 5 ind 7 ind 8 ind 9
100 16 6 3 8
3300 6 mod 18

x       
      

 
 

Using the above table in reverse direction (we locate 6 in the bottom row of the 
table and see what integer it corresponds to in the top row): 

 7 mod 19x  . 

Therefore  100 100 100 1005 7 8 9 7 mod 19 . 

(b) This time we are asked to compute  1 000 001 1 000 003 1 000 00711 15 18 mod 19x  . By 

the same token we have 

   
     

     
 

1 000 001 1 000 003 1 000 007
2 2

2 2 2

ind ind 11 15 18

1 000 001 ind 11 1 000 003 ind 15 1 000 007 ind 18
1 000 001 12 1 000 003 11 1 000 007 9

32 000 108 14 mod 18

x 

  
     

 

 

Finding the integer 14 in the bottom row of the above table and reading off the 
corresponding value in the top row we have 

 6 mod 19x  . 

Hence  1 000 001 1 000 003 1 000 00711 15 18 6 mod 19 . 
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(c) We are asked to find  1001005 mod 19x   where  mod 19x  is the least non-

negative residue. Taking indices gives 

   
 

 
    

100100
2 2

100 100
2 2

Because 100 10 mod 18

ind ind 5

100 ind 5 10 ind 5 mod 18

x





   

From the given table  2ind 5 16 . Substituting this into the above gives 

   100
2ind 10 16 mod 18x     (�) 

Using the given hint  10 10 mod 18n   we have  

   100
2ind 10 16 10 16 160 16 mod 18x       . 

Using the above table in the reverse direction we have 

 5 mod 19x  . 

Hence the least non-negative residue of 
1001005  is  5 mod 19 . 

 

9. We are asked to show that ka   1 mod p   where 1 1k p    and a is a 

primitive root. 
Proof. 
We are given that a is a primitive root. Therefore by Proposition (6.10): 

If  gcd , 1a n   and a has order  n  then the integer a is called the 

primitive root of the integer n.  

Since p is prime so   1p p   . Recall that the order is the smallest positive 

integer m such that  1 modma n . Our given a is a primitive root so order is 

  1p p    which implies that ka   1 mod p  for 1 1k p   .  

This completes our proof. 
■ 

 
10. The order of 10 modulo 18 does not exist because by definition (6.1) we need 

the  gcd , 1a n   but we have  gcd 10, 18 2 : 

 Let 1n   and  gcd , 1a n  . The order of a modulo n is the smallest 

positive integer k such that  1 modka n .  

See Example 3 of main text. 
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11. (a) We need to solve  3 2 mod 37x   by using the primitive root 2. Taking the 

index to the base 2 of both sides of this equation and using the rules of indices 

gives 

     
   

3
2 2

2

ind ind 2 mod 36

3 ind 1 mod 36

x

x



 
   

The  gcd 3, 36 3  and 3 1 so there are no solutions. 

(b) This time we solve  16 10 mod 37x  . By taking the index to the base 2 of 

this we have  

    
      
16

2 2

2 2

ind ind 10 mod 36

16 ind ind 10 mod 36 �

x

x



 
 

We need to find the index k such that  2 10 mod 37k  . Evaluating powers of 2 

yields 

 
5 6 7 8 9

10 11 12

2 32 5, 2 10, 2 20, 2 40 3, 2 6,
2 12, 2 24, 2 11 mod 37

            
     

  

Now    2
11 121 10 mod 37   . Therefore    2242 11 10 mod 37    which 

implies that 24k  . Hence  2ind 10 24  so substituting this into  �  gives 

   216 ind 24 mod 36x  . 

The  gcd 16, 24 4  and 4 36  so we have 4 incongruent solutions. Dividing 

this congruence by 4 

   24 ind 6 mod 9x  .    

By inspection we have  2ind 6x   and the other 3 solutions are given by 

adding equal steps of 9 to each 

   2ind 6, 6 9, 6 18, 6 27 6, 15, 24, 33 mod 36x      . 

The 4 incongruent solutions to the given equation are 

   
 

6 15 24 33

3 3

3

2 , 2 , 2 , 2

27, 5 , 10, 24 By above calculations
27, 23, 10, 13 27, 23, 10, 14 mod 37

x 
      

 
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Our 4 solutions in ascending order are  , 14, 23, 2710 mod 37x  . 

 

12. We are given that the order of  moda n  and  modb n  is r. However we need 

to show that the order of  modab n  is not necessarily equal to r. 

(a) We consider modulo 9. Let us evaluate the order of  2 mod 9  and 

 5 mod 9 . How? 

By corollary (6.5): 

Let the integer a modulo n have order k, then  k n .  

The Euler phi function  9 6  . The only divisors of 6 are 1, 2, 3 and 6: 

 2 3 62 4, 2 8, 2 64 1 mod 9    . 

The order of  2 mod 9  is 6. Similarly we have 

 2 3 65 25 7, 5 125 8, 5 1 mod 9     . 

The order of  5 mod 9  is 6 as well. However the order of  

 2 5 10 1 mod 9    is clearly 1. 

Hence the order of    2 5 mod 9  is not equal to 6. 

(b) The order of both  2 mod 19  and  3 mod 19  is 18.  

Let us evaluate the order of  2 3 6 mod 19  . By corollary (6.5): 

Let the integer a modulo n have order k, then  k n .  

The order of  6 mod 19  is a divisor of  19 18  . The only divisors of 18 are 

1, 2, 9 and 18: 

 2 96 36 17, 6 10077696 1 mod 19     

Hence the order of  6 mod 19  is 9 not 18. 

 

13. We are asked to prove the order of a modulo  1na   is n. 

Proof. 
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Clearly    1 1n na a   which implies that  

     1 0 mod 1 1 mod 1n n n na a a a      . 

We need to show n is the smallest positive integer such that the above holds. 

Suppose   1 mod 1m na a   where m n . Then  

  1 0 mod 1m na a    which implies    1 1n ma a  . 

By Theorem (1.2) (e): 

If   and 0x y y   then x y  

We have 1 1n ma a   . However this is impossible because m n . Hence n 

is the smallest positive integer which implies that the order of a modulo 

 1na   is n. This completes our proof. 

■ 
 

14.  We are given that the order of a modulo n is k where 2mn   and we need to 

prove that 12mk  . 

Proof. 
We use Corollary (6.5) to prove this result: 

Let the integer a modulo n have order k, then  k n .  

Let k be the order of n. We are given that 2mn   so by Proposition (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

We have   11 12 2 1 2 2
2 2

m m m m 
                 

. Therefore by the above Corollary we 

have 12mk   which is our required result. 

■ 
 

15. We need to show that if a modulo n has order k then ma  also has order k 

 gcd , 1k m  . 

Proof. 
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  . We are given that  gcd , 1k m  . Therefore by applying Proposition 

(6.8): 

Let a modulo n have order k. Then the integer sa  has order 

 gcd ,
k
s k

  where s is a positive integer 

We have the order of ma  is   1gcd ,
k k k
m k

  .  

  . Now we assume that ma  also has order k  and need to show that  

 gcd , 1k m  . 

Suppose the  gcd , 1k m g  . Then the order of ma  by the above 

Proposition (6.8) is  

  Because  1
gcd ,

k k k g
gm k

       

However, we are assuming that the order of ma  is k. We cannot have order of 
ma  is k and it is less than k. Hence our supposition  gcd , 1k m g   must be 

wrong so  gcd , 1k m  . This completes our proof. 

■ 
 

16. We are given that r  is a primitive root of the prime p and we need to show 

that the least non-negative residue of  modmr p  is also a primitive root of p 

   gcd , 1 1m p   . 

Proof. 

Since we are given r is a primitive root of p so the order of  modr p  is  

  1p p   . 

By the result of previous question we have the order of mr  is 1p    

 gcd , 1 1m p   . Hence  modmr p  has the same order 1p  because  

 gcd , 1 1m p   . This completes our proof. 

■ 
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17. We are required to prove that if n has a primitive root then it has exactly 

  n   incongruent primitive roots.  

Proof. 

Very similar to the proof of the previous question. 

Let r be a primitive root of n. Then the elements of  
  2 3, , , , nS r r r r   

belong to the reduced residue system modulo n.  

Let mr S  then mr  is a primitive root of p if it has order  n .  

By Corollary (6.9) we have 
mr  has order  n     gcd , 1m n   

It is the number of integers m which are relatively prime to  n . This is given 

by the Euler phi function. Hence the number of primitive roots of n is   n  . 

This completes our proof. 
■ 

 

18. We are asked to prove that if a has order 1n   modulo n then n is prime. 

Proof. 

We are given that a has order 1n   modulo n which gives 

 1 1 modna n  . 

This implies that the smallest positive index of a with this property is 1n  . By 

the definition of the Euler totient function   1n n    for 1n  . Why? 

Because the definition is 

    gcd , 1 and  1n Card m m n m n     . 

And this set can have at most 1n  elements. Hence a must be primitive root 

of n. Why? 

Because we are given that the order of a modulo n is 1n .  

Since a is primitive root so   1n n   . By Proposition (5.2): 

n  is prime     1n n    
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Thus n is prime. This completes our proof. 
 ■ 

 

19. We are asked to solve  6 11 mod 19x  . Since 19 is prime so it has a primitive 

root. We need to find one. Let us test 2 for a primitive root. The factors of 

 19 19 1 18     are 1, 2, 3, 6, 9 and 18. We have 

 52 32 13 mod 19   

 62 2 13 26 7 mod 19     

 92 8 7 56 1 mod 19      

Hence 2 is a primitive root of 19.  

Taking index to the base 2 of the given equation  6 11 mod 19x   yields 

    6
2 2ind ind 11 mod 18x     

    2 26 ind ind 11 mod 18x    (*) 

We need to find  2ind 11 . We know that  27 49 11 mod 19   so squaring 

 62 7 mod 19  gives 

 12 22 7 11 mod 19  . 

Therefore  2ind 11 12  and substituting this into (*) gives 

   26 ind 12 mod 18x  . 

The  gcd 6, 18 6  and 6 18  so the given congruence equation has 6 

incongruent solutions. Dividing through by 6 gives 

     2 2ind 2 mod 3 ind 2 3x x k    . 

Hence, we have    2ind 2 3 2, 5, 8, 11, 14, 17 mod 18x k   . Therefore 

 

2 5 8 11 14 172 , 2 , 2 , 2 , 2 , 2
4, 13, 13 8, 1 4, 4 8, 4 7
4, 13, 9, 15, 6, 10 mod 19

x 
       


 

Our solutions in ascending order are  4, 6, 9, 10, 13, 15 mod 19x  .  
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We also need to solve the Diophantine equation 6 11 19x y  . Substituting 

4, 6, 9, 10, 13, 15x   into 6 11 19x y   and transposing gives 

6 4096 114 4096 11 19 215
19

y y        

6
46 656 11

6 46 656 11 19 2455
19

y y


       

6
531 441 11

9 531 441 11 19 27 970
19

y y


       

6
1 000 000 11

10 1 000 000 11 19 52 631
19

y y


       

6
4 826 809 11

13 4 826 809 11 19 254 042
19

y y


       

6
11 390 625 11

15 11 390 625 11 19 599 506
19

y y


       

Our solutions are  4, 215x y  ,  6, 2455x y  ,  9, 27 970x y  , 

 10, 52 631x y  ,  13, 254 042x y   and  15, 599 506x y  . 

  

20. The positive integer 15n   has no primitive roots because the relatively prime 

integers with 15 are  , 14, 7, 8, 11, 131, 2, 4  which means that  15 8  and the 

order of these is given in the table below: 
Integer 1 2 4 7 8 11 13 14 

Order 1 4 2 4 4 2 4 2 
 

None of the relatively prime integers have order 8 so 15 has no primitive roots.  
 

21. We need to show that mn  does not necessarily have primitive roots given that 

both m and n have primitive roots. 

How? 

Produce a counter example. 

Let 3m   and 5n   then both have primitive roots. Why? 

Because 3 and 5 are prime and by Primitive Root Theorem (6.21): 

Every prime has a primitive root. 
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However we have shown in the previous question that 3 5 15m n     does 

not  have primitive roots. 

 

22. (i) We are asked to prove  22 1 mod 2
m mr

  for 3m  . 

Proof. 
We use mathematical induction. 
Let 3m   then we need to check that 

 3 22 2 1 mod 8r r

  .   

How do we know  2 1 mod 8r   is true for all r? 

Well we are given that r is odd so let 2 1r j  . Then we have 

 
 

22 22 1 4 4 1
4 1 1

r j j j
j j

    
  

 

Now the product of two consecutive numbers  1j j   must be even, say 2l . 

Therefore we have 

   2 4 1 1 4 2 1 8 1r j j l l       . 

Hence  2 1 mod 8r   which implies that the result is true for 3m  . 

Assume the result is true for m k , that is 

   22 1 mod 2 �
k kr

  

Required to prove the result for 1m k  : 

 12 11 mod 2
k kr
     

Examining the left hand side of this 

   1 2 1 2 2 2
2 2 2 2 2 1mod 2
k k k k kr r r r
          (*) 

We have an expression for 
22k

r


from (�). Using this and the definition of 
congruence  

22 1 2
k kr 

   where   is an integer. 

Squaring this gives 

     2 2 2 22 2

2

2 1

1 2 1

2 1 2 2 2 1

2 2 2 1
2 2 2 1
2 2 1

k k k k

k k

k k

k k

r   

 
 
 





 

    
     
     
     
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Note that we have  2 2
2 1 2 1

integer

2 2 1
k k kr  
       

. Hence 

   2 2
2 1 12 integer 1 0 1 1 mod 2

k k kr
          . 

Substituting this into (*) yields 

   1 2 2
2 2 11 mod 2
k k kr r
     

which is our required result. 

By mathematical induction we have  22 1 mod 2
m mr

  for 3m  . 

■ 
(ii) In this part we are asked to prove that the integer 2m  for 3m   has no 
primitive roots. How do we prove this? 
By contradiction and then use the result of part (i). 
Proof. 
Suppose r is a primitive root of 2m . Then clearly r is odd because we can only 

have an order provided  gcd , 2 1mr  . 

The order of  mod 2mr  is given by the Euler phi function of 2m  which is 

  112 2 1 2
2

m m m 
       

. 

Therefore, we have that the order of  mod 2mr  is 12m  which implies that 

 12 1 mod 2
m mr

 . 

where 12m  is the smallest positive integer such that the result holds. 

However, by part (i) we have  22 1 mod 2
m mr

  and the index 2 12 2m m  . 

This is a contradiction because we have found a lower index therefore our 
supposition of r being a primitive root of 2m  must be false.  
Thus 2m  for 3m   has no primitive roots. 

■ 
 

23. We are asked to show if , 2m n   and  gcd , 1m n   then the integer mn  

has no primitive roots. 

Proof. 

Let r be a primitive root of mn . This implies the order of r is  

       Because gcd , 1mn m n m n         
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By Euler’s theorem we have 
   1 modmr m    and     1 modnr n   

By Proposition (5.10): 

For  2,k k  is an even integer. 

We have  n  is an even integer so 
 
2
n

 is an integer. Therefore 

  
 

       
 2 2 2 1 mod

n n m n
mmr r r m

   
    . 

Similarly, 
 
2
m

 is an integer so  

  
 

       
 2 2 2 1 mod

m m n m
nnr r r n

   
    . 

Using the result given in the hint on  
   

 2 1 mod
m n

r m
 

   and  
   

 2 1 mod
n m

r n
 

 . 

Yields 
   

   2 1 mod LCM of ,   is  
m n

r mn m n mn
 

      

We have an index 
       2
m n

m n
 

   so r cannot be a primitive root of 

modulo mn .  

Hence the integer mn  has no primitive roots. 
■ 

 

24. We need to prove that 
 

 2 1 mod
n

r n


  given that n has no primitive roots. 

Proof. 
The integer n must be composite because by result of question 17: 

Every prime p has  1p   incongruent primitive roots. 

If kn p  for odd prime p and 2k   then it has a primitive root. Why? 
By Theorem (6.27): 

kp  for 1k   has a primitive root 
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 If 2 rn p  then by Proposition (6.30): 

There is a primitive root of 2 kp  where 1k  . 

 The integer 2 rn p  has primitive roots. Hence kn p  and 2 kn p . 
Let r be a member of the reduced residue system modulo n. 
We consider two cases of n for which there are no primitive roots. 

Case 1 For 2mn  . 

If 2mn   for 3m   then by the result of question 22 (i): 

 22 1 mod 2
m mr

  

We have   12 2m m   therefore 
  1

2
2 2 2
2 2

m m
m

 
  . Putting this into the 

above yields 
 

 2
2

2 2 1 mod 2
m

m mr r


   .      

Hence for 2mn   we have our required result. 

Case II For n mk  where  gcd , 1m k   and , 2m k  . 

By the solution of the previous question we have: 
   

 2 1 mod
m k

r mk
 

  

Recall that        n mk m k      because  gcd , 1m k  . Hence we have 

     
 2 2 1 mod

m k mk

r r mk
  

   

This is our required result for n mk .  
This completes our proof. 

■ 

 


