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Complete Solutions to Supplementary Problems 5 
 

1. (i) First, we find the prime decomposition of 100: 
2 2100 2 5  . 

Using formula (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

Evaluating the Euler Totient function we have 

  1 1100 100 1 1 40
2 5


   

      
   

. 

(ii) To find the last two digits of 20132013  we apply Euler’s Theorem:  
   1 modna n   provided  gcd , 1a n  . 

First note that  2013 13 mod 100 . By Euler’s Theorem and the result of part 

(i) we have 

   4013 1 mod 100 Because  100 40     

So far 

 40 402013 13 1 mod 100   (*) 

Applying the division algorithm to write the index 2013 in terms of 40: 

 2013 40 50 13   . 

Therefore using (*) we have 

    502013 40 13 50 13 13

By (*)

2013 13 13 1 13 13 mod 100     . 

Finding powers of 13 gives  

 313 2197 3 mod 100   . 

Using this result we have  

   
   

42013 13 3

4

2013 13 13 13 Writing index 13 3 4 1

3 13 81 13 1053 53 mod 100

        
      

 

The last two digits of 20132013  are 53. 

(iii) We need to find the last two digits of 
201320132013 . We use the result of (*) 

given in part (ii).  
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First, we need to find  20132013 mod 40x  where x is the least non – negative 

residue modulo 40. Note that  2013 13 mod 40  so  

 2013 20132013 13 mod 40x    (**) 

Since 13 and 40 are relatively prime so we can use Euler’s Theorem with  40  

which is given by  

  1 140 40 1 1 16
2 5


               

. 

By Euler’s Theorem we have  

 1613 1 mod 40    (�) 

Writing the index 2013 in (**) as a multiple of 16 and any remainder we have 

 2013 125 16 13   . 

Using the rules of indices in (**) and the result of (�) we have 
     125125 16 132013 2013 16 13 132013 13 13 13 13 13 mod 40      . 

Evaluating simpler powers of 13 we have  

 213 169 9 mod 40    and  29 81 1 mod 40  .  

Combining these gives  413 1 mod 40 . Hence  

   32013 13 42013 13 13 13 1 13 13 mod 40      . 

Therefore 20132013 40 13k  .  

To find the last two digits of 
201320132013 , we apply Euler’s Theorem;  

 201320132013 mod 100y . 

Substituting the index 20132013 40 1k   and now using (*) yields 

   20132013 40 13 40 13 132013 2013 2013 2013 1 13 53 mod 100
kk      . 

The last two digits of 
201320132013  is 53.  

(iv) Because the  gcd 100, 2014 2 . 

 
2. In each case we write the given integer into its prime factors and then use the 

formula (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

(a) The prime decomposition of 1000 is evaluated by: 
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31000 125 and   125 5
8

  . 

Therefore 3 3 31000 8 5 2 5    . Using the above formula, we have 

  1 11000 1000 1 1 400
2 5


               

. 

(b) Using that 10 000 10 1000   we have  
3 3 3 3 4 410 000 10 1000 10 2 5 2 5 2 5 2 5           . 

Again using the above formula 

  1 110 000 10 000 1 1 4000
2 5


               

. 

(c) The prime factors of 100 000 are 2 and 5 so 

  1 1100 000 100 000 1 1 40 000
2 5


               

. 

(d) Similarly we have 

  1 11000 000 1000000 1 1 400000
2 5


               

. 

Since each of these numbers has the same prime factors, 2 and 5, so  

1 2

1 1 1 1 4 21 1 1 1
2 5 10 5p p

                                      
. 

The given integer n is 10 times larger than the previous integer so each time we 
have  n  is 10 times larger as well. 

 
3. (a) We need to evaluate  2014 . The prime factorization of 2014 can be 

evaluated by: 
2014 1007

2
   (*) 

We don’t know whether 1007 is prime or composite so we need to test it. 
Let p be a prime factor of 1007 then it must satisfy: 

1007 31p     
. 

Clearly 2, 3 and 5 are not factors of 1001. Nor is 7, 11, 13 and 17 but 19 is a 
factor of 1007 because   

1007 53
19

  and 53 is prime. 

Therefore 1007 19 53   which implies from (*) we have 
2014 2 19 53   . 
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Using the formula  
1 2

1 1 11 1 1
r

n n
p p p


                             

  with the above primes: 

  1 1 12014 2014 1 1 1 936
2 19 53


                          

. 

(b) Similarly, factorizing 2015 gives 
2015 403

5
   (�) 

We need to test whether 403 is a prime or composite integer. Let p be a prime 

factor of 403 then 403 20p     
.  

The prime numbers 2, 3, 5 and 11 are not factors of 403. Nor is 7 a factor. 
However, 13 is a factor of 403 because  

403 31 403 13 31
13

     and 31 is prime. 

Using (�) we have 2015 5 403 5 13 31     .  
Applying the Euler totient formula gives 

  1 1 12015 2015 1 1 1 1440
5 13 31


                          

. 

(c) Factorizing 2016 we have 
2016 63
32

 . 

And 263 9 7 3 7    . Remember 532 2  so we have 
5 22016 32 63 2 3 7     . 

The only prime factors of 2016 are 2, 3 and 7, therefore 

  1 1 12016 2016 1 1 1 576
2 3 7


                          

. 

(d) We are given that 2017 is prime so we use Proposition (5.2): 

If p is prime, then   1p p   . 

 2017 2017 1 2016    . 

 

4. We need to find natural numbers such that   4
5
nn  . Using the formula for 

 n  we have 

 
1 2

1 1 1 41 1 1
5r

n n n
p p p


                              

 . 
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The prime 5 must be a factor of n because on the right-hand side we have a 

denominator of 5. Also 1 41
5 5

   therefore there is only one prime factor of n 

which is 5. Hence 5mn   where m is a natural number. 
5. We need to find the last three digits of 20112011 . This means we need to work 

with modulo 1000. From solution to question 2(a) we have 

 1000 400  . 

We use Euler’s Theorem (5.14): 
   1 modna n   provided  gcd , 1a n   

In order to apply this we first need to evaluate  gcd 1000, 2011 . By the 

Euclidean algorithm we have 

 
 
 

2011 2 1000 11
1000 90 11 10

11 1 10 1

  
  
  

 

The  gcd 1000, 2011 1  so we can apply Euler’s Theorem: 
   1000 4002011 2011 1 mod 1000    (*) 

We need to find  20112011 ? mod 1000 .  

Simplifying this  2011 11 mod 1000  because it is easier to work with residue 

11 rather than 2011. This implies that we have to evaluate 

 2011 20112011 11 ? mod 1000    (**) 

By (*) we have  400 4002011 11 1 mod 1000  . Writing the index 2011 in terms 

of 40 by using the division algorithm: 

 2011 5 400 11   . 

Using this in (**) yields 
     55 400 112011 400 11 1111 11 11 11 11 mod 1000       (�) 

We need to find the least non-negative residue  1111 mod 1000 . Evaluating 

powers of 11 gives 

 2 3 4 511 121, 11 1331, 11 641, 11 51 mod 1000    . 

Writing the index 11 as a multiple of 5 plus any remainder and working out the 
least non-negative residue we have 
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     25 2 111 5 211 11 11 11 51 11 611 mod 1000       . 

Putting this into (�) gives  201111 611 mod 1000 . The last three digits of 
20112011  is 611. 

 

6. Since we are given that n is odd so  gcd 2 , 1m n  . Applying the 

multiplicative property of the   function to the given  2mn  we have 

     
     1

2 2
1 12 1 2 2
2 2

m m

m m m

n n

n n n

  

  


                 

 

 

7. We need to solve  23 5 mod 100x  . If we try to solve the equivalent 

Diophantine equation, then we would need to solve 
1 10023 100 1

23
yx y x     . 

This is difficult to solve because we need both x and y to be integers.  
We use the result established in question 12(b) of Exercises 5.2: 

If  gcd , 1a n   and  modax b n  then   1nx ba  . 

We use this    1 modnx a b n   to solve  23 5 mod 100x  . First, we need to 

check that  gcd 23, 100 1  which it is. 

We have evaluated  100 40   in question 1(i). Using the given result with 

23a  , 5b   and 100n   we have: 
   1 40 1 3923 5 23 5 mod 100nx a b          (�) 

Evaluating powers of 23: 

 2 3 4 5 623 29, 23 67, 23 41, 23 43, 23 89 11 mod 100      . 

Working with 11  is much easier than working with 23. Writing the index 39 
as a multiple of 6 and a remainder gives 

 39 6 6 3   . 

Therefore, we have 
       6 66 6 339 6 3 323 23 23 23 11 23 61 67 87 mod 100          . 

Substituting this result  3923 87 mod 100  into (�) gives 
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 3923 5 87 5 35 mod 100x      . 

The solution of  23 5 mod 100x   is  35 mod 100x  . 

 

8. We are given that 2 3m kn   and need to show that   3
nn  . 

Proof. 

Using the formula  
1 2

1 1 11 1 1
r

n n
p p p


                             

  with 1 2p   and 2 3p  : 

    1 1 12 3 1 1
2 3 2

m kn n n 
                

2      3 3
n      

. 

This completes our proof. 
■ 

This   3
nn   means that one third of the integers between 1 and n have a 

common factor of only 1 with n. Only one third of residues modulo n have an 
inverse. 
 

9. (i) The given result   2
nn   means that half the integers between 1 and n 

have an inverse modulo n. 

(ii) We are asked to prove that if   2
nn   then 2mn  . (See question 5 of 

Exercises 5.1). 
Proof. 

Let the prime decomposition of 1 2
1 2

rk k k
rn p p p     where p’s are distinct 

primes. By using the formula  
1 2

1 1 11 1 1
r

n n
p p p


                             

  and equating 

to / 2n  we have 

 
1 2

1 1 1 11 1 1
2 2r

nn n n
p p p


                                         

 . 

Cancelling out the n’s on both sides gives 

1 2

1 1 1 11 1 1
2rp p p

                             
  (*) 

Remember we are informed that p’s are distinct primes so the only solution to 
this equation (*) is 1 2p   and there are no other primes. Why? 
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Suppose there were other primes apart from 2 then the product  

2

1 1 11 1
2rp p

                 
 . 

Hence, we have our required result because n can only have the prime 2 so 
2mn  . 

■ 

10. (i) We need to evaluate    4 23 3 2 3 ? mod 4   : 

   4 23 3 2 3 81 9 6 96 0 mod 4       . 

(ii) Now we need to show this is always the case  4 2 2 0 mod 4a a a   . 

Proof. 
If a is an even number then substituting 2a m  into the given congruence will 

be a multiple of 4 because  4 2 2 4 0 mod 4a a a k    .  

If a is odd then  gcd , 4 1a   and so we can use Euler’s Theorem (5.14): 

   1 modna n   provided  gcd , 1a n   

The Euler totient function of  4 2   so  2 1 mod 4a  . Squaring this gives 

   22 4 1 mod 4a a  . 

As we are assuming a is odd which we can write as 2 1a m  . Therefore 

   2 2 2 1 4 2 2 mod 4a m m     . 

Substituting  2 1 mod 4a  ,   4 1 mod 4a   and  2 2 mod 4a   into the given 

congruence  4 2 2 mod 4a a a   yields 

 4 2 2 1 1 2 4 0 mod 4a a a       . 

This completes our proof. 
■ 

 
11.  (a) We are given 1 299 709 15 485 863n    and we need to find  n . 

We are also told that both of these are prime numbers. Using Proposition (5.2): 

If p is prime then   1p p   . 

And the property that Euler’s phi function is multiplicative we have 
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1 299 709 15 485 863

1 299 709 15 485 863
1 299 708 15 485 862 20 127 098 728 296

n 

 

 

 
  

 

(b) Similarly we have 

   
   
1726 943 179 424 673

1726 943 179 424 673
1726 942 179 424 672=309 856 001 913 024

n 

 

 

 
 

 

 
12. (i) We need to evaluate  561 . Since 561 3 11 17    and each of these 

factors are prime we have 

   
     

561 3 11 17
3 11 17

2 10 16 320

 
  

  
  
   

 

This  561 320   means there are 320 positive integers between 1 and 561 

which have no factor in common with 561 apart from the trivial factor of 1. 

(ii) We need to show  3202 1 mod 561 . Evaluating powers of 2 by using the 

given hint we have: 

     210 20 40 22 463 98 mod 561 , 2 98 67, 2 67 1 mod 561         

Since 320 8 40   so    8320 402 2 1 mod 561  .  

(iii) By part (ii) we have 40  . 

(iv) In this case  561  .  

 
13. (i) The integer 111 is composite because 3 is factor of 111 as the sum of the 

digits 1 1 1 3    and 3 3 . The other factor can be found by dividing 111 by 

3 which gives 37. Both these integers 3 and 37 are prime factors of 111. 
Evaluating the Euler phi function of 111: 

   
   

111 3 37
3 37

2 36 72

 
 

 
 
  

 

(ii) Let the set  0, 1, 2, 3, , 111S    be the set of least non-negative residues  

modulo 111. Let a be in this set. Then it has a multiplicative inverse if we have  
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a solution for  1 mod 111ax  . This linear congruence  

 1 mod 111ax  . 

has a solution if and only if  gcd , 111 1a  . How many residues in the set S 

are relatively prime to 111? 
Since  111 72   so there are 72 residues which will have a multiplicative 

inverse and there are 111 72 39   which will not have a multiplicative inverse 
modulo 111. 
 

14. How do we prove  2 2 110 4 10n n   ? 

Evaluate  2
10n  by using the formula  

1 2

1 1 11 1 1
r

n n
p p p


                             

  and 

then derive this is actually equal to 
2 14 10n  . 

Proof. 
The factors of 10 are 2 and 5 so we have 

 
 
   

2
2

2 2

2 2

10 2 5

2 5

By the multiplicative property
2 5

because the gcd of 2 and 5 is 1

nn

n n

n n

 



 

        
    

 
    
  

 

Using the above formula to evaluate each of these terms on the right-hand side: 

     

 
 

2 2 2 2 2

2 2

2 2

2 2

1 1

1 1

1 110 2 5 2 1 5 1
2 5

1 42 5
2 5

4 2 5

4 10 4 10

n n n n n

n n

n n

n n

  

 

 

                   
               



  

 

This completes our proof. 
■ 

 

15. (a) The given statement - if  moda b n  then    a b   is false because 

 100 5 mod 95  but    100 40 4 5    . 

(b) Statement (b) which claims ‘if  moda b n  then      moda b n  ’ 

is also false because 
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 100 5 mod 95  but  100 40     4 5 mod 95 . 

(c) This statement ‘If  moda b n  then       moda b n    may be 

true.’ Let us check with the above numbers: 

 100 5 mod 95 . 

We have    100 40, 5 4   . We need to evaluate  95 . 

The prime factorization of 95 is 95 5 19   so 

     95 5 19 4 18 72       . 

Hence the given statement is false because  

40  4 mod 72 . 

 

16. We need to prove   1 2 22 1 2 2 2 2p p p         where 2 1p   is prime. 

Proof. 
Since we are given that 2 1p   is prime so we use (5.2): 

  1q q    where q is prime. 

Applying this with 2 1pq    we have 

 

 
       
 

1

2 3 1 2

2 3

1 2 2

2 1 2 1 1
2 2
2 2 1

2 2 1 2 2 2 1 By 1 1 1

2 2 2 2 1
2 2 2 2

p p

p

p

p p n n n

p p

p p

x x x x x





   

 

 

   
 
 

               
    
    

 




 

We have proved the required result. 
■ 

 

17. (a) We need to evaluate 
 500
500


. The prime factorization of 500 is 

2 3500 4 125 2 5    . 

By applying the formula  
1 2

1 1 11 1 1
r

n n
p p p


                             

 : 

  1 1500 500 1 1 200
2 5


               

. 

The probability that a number is relatively prime to 500 is  

 500 200 2 0.4
500 500 5


   . 
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(b) We are given that 929n   is prime so by (5.2): 

  1q q    where q is prime 

We have  929 929 1 928    .  

The probability that a number is relatively prime to 929 is  

 929 928
929 929


 . 

(c) This time 111 929n   . The integer 929 is prime but 111 is composite. 
Clearly 3 is a factor of 111 because the sum of the digits 1 1 1 3    and  

3 3 . Therefore  

111 37
3

  implies that 111 3 37  . 

This implies that  gcd 111, 929 1 . This means that we can use the 

multiplicative property of the Euler totient function: 

     
   
     

111 929 111 929
3 37 929
3 37 929

2 36 928 Because 3, 37 and 929 are prime
66 816

  
 
  

 
 


      


 

The probability that a chosen number is relatively prime to 111 929 103119   
is  

   103 119 66 816111 929
0.65 (2dp)

111 929 103 119 103 119

 
  


. 

65% of the numbers below 103 119 are relatively prime to it. 

We need to prove 
  11
p

p p


  . 

Proof. 
Given that p is prime we have   1p p    so  

  1 11
p p

p p p
    . 

■ 
This result signifies that the probability that a chosen number is relatively 
prime to a prime number is close to 1 for large prime p.  
 

18. We need to find all the residues that are relatively prime to 30 and these are 
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 1, 7, 11, 13, 17, 19, 23, 29 . Note that these are all the prime numbers below 30 

apart from 2, 3 and 5, only 1 is not a prime. 
 

19. (i) We are asked to prove that     1 2 1m m mp p p p         . 

Proof. 
By Proposition (5.4): 

  1k k kp p p    

Using this we have 

  
 

1

1 1

m m m

m

p p p

p p

  







    
    

 

The gcd of 1mp   and 1p   is 1 because the prime p cannot be a factor of 1p  . 
Using the multiplicative property of the   function: 

       provided  gcd , 1mn m n m n     

in the above derivation gives 

    
   

   

1

1

1 2 1

1

1

1 By  

m m

m

m m k k k

p p p

p p

p p p p p p

  

 

 





  

    
 

           

 

■ 

(ii) Now we need to prove     22 1m mp p p         . 

Proof. 
From the result of part (i) we have  

    
     
1 2

2

1
1 1 �

m m m

m

p p p p
p p p

  


 



     
  

 

We use the result of question 7 of Exercise 5.1: 

   1m mn n n    

Applying this result to    1 1p p   with 1n p   and 2m   gives 

     21 1 1p p p         
. 

Substituting this into  �  gives 

        22 21 1 1m m mp p p p p p             
. 

This is our required result. 
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■ 
 

20. We are given that 1 2 3
1 2 3
k k kn p p p    and need to show  

       1 2 31 1 1
1 2 3 1 2 3
k k kn p p p p p p           . 

Proof. 

Since 1 2 3
1 2 3
k k kn p p p    so by using formula (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

We have 

   1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3
1 2 3

1 2 3
1 2 3

1 2 3
1 1 1

1 2 3 1

1 1 11 1 1

1 1 1

k k k

k k k

k k k

k k k

n p p p

p p p
p p p

p p p
p p p

p p p
p p p p

 

  

  
                                   
                                   

         
     1 2 3

2 3
1 1 1

1 2 3 1 2 3

1 1 1
k k k

p p

p p p p p p    

  
     

 

This is our required result. 
■ 
 

21. (a) We need to show that if n is odd then    2n n  . 

Proof. 

We are given that n is odd therefore  gcd 2, 1n  . Applying the 

multiplicative property of Euler’s phi function gives 

     
   

2 2
1

n n
n n

  
 

  
  

 

We have our required result. 
■ 

(b) This time we are asked to prove that if n is even then    2 2n n  . 

Proof. 
Let 2kn a  where a is odd and k is a natural number. By using the 
multiplicative property of the Euler’s phi function we have 

         1 12 2 2 2 2k k kn a a a         . 

By the result of question 5 of Exercise 5.1: 
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    112 2 2
2

n n n    

Using this in the above derivation gives 

          1 12 2 2 2 2k k kn a a a         

Applying the above boxed result to the last line gives 

         12 2 2 2 2k kn a a      

Since a is odd so the  gcd 2 , 1k a   and using the multiplicative property  

          2 2 2 2 2 2 Because  2k k kn a a n a n               

This completes our proof. 
■ 
 

22.  We need to show that the following is false: 

If  1 2gcd , , , 1km m m   then  

       1 2 1 2k km m m m m m           . 

Let 1 2 38, 9  and  10m m m    then using the given gcd of three integers 

we have  

      gcd 8, 9, 10 gcd 8, gcd 9, 10 gcd 8, 1 1   . 

Evaluating the Euler phi function of the product 8 9 10   gives 

 8 9 10 192    . 

However 

       8 9 10 8 9 10
4 6 4 96

       
   

 

Thus we have produced an example where 

       8 9 10 192 96 8 9 10          . 

 

23. (i) We need to find a formula for 
 n
n


. 

Let 1 2
1 2

rk k k
rn p p p   be the prime decomposition of n. By formula (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

Applying this gives 
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  n
n

n


 1 2

1 1 11 1 1
rp p p

n

                            


    
1 2

1 2
1 2

1 2 1 2

1 1 11 1 1

1 1 1 1 1 1 1

r

r
r

r r

p p p
p p p

p p p
p p p p p p

                             
                                



 


 

(ii) We need to prove that if  n n  then   3n
n

 . 

Proof. 

Which integers satisfy  n n ? 

Using the result of part (i) with  
n
n




  where   is an integer gives 

      
    

1 2
1 2

1 2 1 2

1
1 1 1

1 1 1

r
r

r r

n p p p
n p p p

p p p p p p






 
  

   



 

 

Note that for primes 5p   the expression 1p   is not prime. Why not? 

Because for 5p   we have 1p   is even and the only even prime is 2. 

This implies that     1 2
1 2

1
1 1 1r

r

p p p
p p p  




 is an integer only if it 

contains the primes 1 2p   and 2 3p  . Evaluating this integer  

    
12 3 3

2 1 3 1
n
n

  
 

. 

 This is our required result. 
■ 

 

24. We need to prove that          2
ma mb m a b          where m, a and b are 

pairwise prime. 

Proof. 
We are given that m, a  and b are pairwise prime. What does this mean? 

     gcd , gcd , gcd , 1m a m b a b   . 

By the multiplicative property of the Euler phi function we have 
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     2

ma mb m a m b

m a b

     

  


    

 

This completes our proof. 
■ 

 
25. (a) The divisors of 10n   are 1, 2, 5 and 10d  . Thus, the sum 

         1 2 5 10

1 1 4 4 10
d n

d       

    


 

(b) The factors of 15 are 1, 3, 5  and 15d  . Finding the sum  
d n

d  for 

15n   gives 

         1 3 5 15

1 2 4 8 15
d n

d       

    


 

(c) In a similar manner we have the divisors of 24n   are  
, 6, 8, 12 and 241, 2, 3, 4d  . 

We need to find   of each of these. The first three are simple enough and the 
remaining are given by 

 4 2  ,  6 2  ,    3 3 28 2 2 2 4     ,   1 112 12 1 1 4
2 3


               

. 

The Euler totient function 24 is   1 124 24 1 1 8
2 3


               

. 

Substituting each of these into the evaluation of  
d n

d  gives 

                 6 8 12 241 2 3 4 +

1 1 2 2 2 4 4 8 24
d n

d             

        


 

Note that in each case we have  
d n

d n  . 

 
 


