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2 Chapter 1. First Order Equations

1

Problem Set 1.1, page 3

1 Draw the graph ofy = et by hand, for−1 ≤ t ≤ 1. What is its slopedy/dt at
t = 0? Add the straight line graph ofy = et. Where do those two graphs cross ?

Solution The derivative ofet has slope1 at t = 0. The graphs meet att = 1 where
their value ise. They don’t actually “cross” because the line is tangent to the curve :
both have slopey ′ = e at t = 1.

2 Draw the graph ofy1 = e2t on top ofy2 = 2et. Which function is larger att = 0?
Which function is larger att = 1 ?

Solution From the graphs we see that att = 0, the function2et is larger whereas at
t = 1, e2t is larger. (e timese is larger than2 timese).

3 What is the slope ofy = e−t at t = 0? Find the slopedy/dt at t = 1.

Solution The slope ofe−t is −e−t. At t = 0 this is−1. The slope att = 1 is−e−1.

4 What “logarithm” do we use for the numbert (the exponent) whenet = 4?

Solution We use the natural logarithm to findt from the equationet = 4. We get that
t = ln 4 ≈ 1.386.

5 State the chain rule for the derivativedy/dt if y(t) = f(u(t)) (chain off andu).

Solution The chain rule gives:

dy

dt
=

df(u(t))

du(t)

du(t)

dt

6 The secondderivative ofet is againet. So y = et solvesd2y/dt2 = y. A sec-
ond order differential equation should have another solution, different fromy = Cet.
What is that second solution ?

Solution The second solution isy = e−t. The second derivative is−(−e−t) = e−t.

7 Show that the nonlinear exampledy/dt = y2 is solved byy = C/(1 − Ct)
for every constantC. The choiceC = 1 gavey = 1/(1− t), starting fromy(0) = 1.

Solution Given thaty = C/(1− Ct), we have:

y2 = C2/(1− Ct)2

dy
dt = C · (−1) · (−C)1/(1− Ct)2 = C2/(1− Ct)2

8 Why will the solution tody/dt = y2 grow faster than the solution tody/dt = y
(if we start them both fromy = 1 at t = 0) ? The first solution blows up att = 1.
The second solutionet grows exponentially fast but it never blows up.

Solution The solution of the equationdy/dt = y2 for y(0) = 1 is y = 1/(1−t), while
the solution tody/dt = y for y(0) = 1 is y = et. Notice that the first solution blows
up att = 1 while the second solutionet grows exponentially fast but never blows up.
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9 Find a solution tody/dt = −y2 starting fromy(0) = 1. Integratedy/y2 and−dt.
(Or work with z = 1/y. Thendz/dt = (dz/dy) (dy/dt) = (−1/y2)(−y2) = 1.
Fromdz/dt = 1 you will know z(t) andy = 1/z.)

Solution The first method has
dy

y2
= −dt

y∫

y(0)

du

u2
= −

t∫

0

dv (u, v are integration variables)

−1

y
+

1

y(0)
= −t

−1

y
= −t− 1

y =
1

1 + t

The approach usingz = 1/y leads todz/dt = 1 andz(0) = 1/1.

Thenz(t) = 1 + t andy = 1/z = 1
1+t .

10 Which of these differential equations are linear (iny) ?

(a)y ′ + siny = t (b) y ′ = t2(y − t) (c) y ′ + ety = t10.

Solution (a) Since this equation solves asin y term, it is not linear iny.

(b) and (c) Since these equations have no nonlinear terms iny, they are linear.
11 The product rule gives what derivative forete−t ? This function is constant. Att = 0

this constant is1. Thenete−t = 1 for all t.

Solution (ete−t) ′ = ete−t − ete−t = 0 so ete−t is a constant(1).
12 dy/dt = y + 1 is not solved byy = et + t. Substitute thaty to show it fails. We can’t

just add the solutions toy ′ = y andy ′ = 1. What numberc makesy = et + c into a
correct solution ?

Solution
dy
dt = y + 1 d(et+c)

dt = et + c+ 1

Wrong d(et+t)
dt 6= et + t+ 1 Correct c= −1

Problem Set 1.3, page 15

1 Set t = 2 in the infinite series fore2. The sum must bee times e, close to7.39.
How many terms in the series to reach a sum of7 ? How many terms to pass7.3 ?

Solution The series fore2 hast = 2 : e2 = 1 + 2 +
22

2!
+

23

3!
+

24

4!
+ · · ·

If we include five terms we get:e2 ≈ 1 + 2 + 2 +
8

6
+

16

24
= 7.0

If we include seven terms we get:e2 ≈ 1+2+
22

2!
+
23

3!
+
24

4!
+

25

120
+

26

720
= 7.35556.
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2 Starting fromy(0) = 1, find the solution tody/dt = y at timet = 1. Starting from
that y(1), solve dy/dt = −y to time t = 2. Draw a rough graph ofy(t) from
t = 0 to t = 2. What does this say aboute−1 timese ?

Solution y = et up to t = 1, so thaty(1) = e. Then for t > 1 the equation
dy/dt = −y hasy = Ce−t. At t = 1, this becomese = Ce−1 so thatC = e2.
The solution ofdy/dt = −y up to t = 2 is y = e2−t. At t = 2 we have returned to
y(2) = y(0) = 1. Then(e−1)(e) = 1.

3 Start withy(0) = $5000. If this grows bydy/dt = .02y until t = 5 and then jumps to
a = .04 per year untilt = 10, what is the account balance att = 10 ?

Solution
t ≤ 5 :

dy

dt
= .02y 5 ≤ t ≤ 10 :

dy

dt
= .04y gives y = Ce.04t

y = 5000e.02t y(5) = Ce−2 = 5000e.1 gives C = 5000e−.1

y(5) = 5000e.1 y(t) = 5000(e.04t−0.1)
y(10) = 5000e.3

4 Change Problem 3 to start with$5000 growing atdy/dt = .04y for the first five years.
Then drop toa = .02 per year until yeart = 10. What is the account balance att = 10?

Solution
dy

dt
= .04y

dy

dt
= .02y for 5 ≤ t ≤ 10

y = C1e
.04t y = C2e

.02t

y(0) = C1 = 5000 y(5) = C2e
.1 = 5000e.2

y(t) = 5000e.04t for t ≤ 5 C2 = 5000e.1

y(5) = 5000e.2 y(t) = 5000(e.02t+0.1)
y(10) = 5000e.3 = same as in 1.3.3.

Problems 5–8 are abouty = eat and its infinite series.
5 Replacet by at in the exponential series to findeat :

eat = 1 + at+
1

2
(at)2 + · · ·+ 1

n !
(at)n + · · ·

Take the derivative of every term (keep five terms). Factor out a to show that
the derivative ofeat equalsaeat. At what timeT doeseat reach2 ?

Solution The derivative of this series is obtained by differentiating the terms individ-
ually:

dy

dt
= a+ at+ · · ·+ 1

(n− 1)!
antn−1 + · · ·

= a

(
1 + at+

1

2
(at)2 + · · ·+ 1

(n− 1)!
an−1tn−1 + · · ·

)
= aeat

.If eaT = 2 then aT = ln2 andT =
ln2
a

.

6 Start fromy′ = ay. Take the derivative of that equation. Take thenth derivative.
Construct the Taylor series that matches all these derivatives att = 0, starting from
1 + at + 1

2 (at)
2. Confirm that this series fory(t) is exactly the exponential series for

eat.

Solution The derivative ofy ′ = ay is y ′′ = ay ′ = a2y. The next derivative is
y ′′′ = ay ′′ which isa3y. Wheny(0) = 1, the derivatives att = 0 area, a2, a3, . . . so

the Taylor series isy(t) = 1 + at+
1

2
a2t2 + · · · = eat.
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7 At what timest do these events happen ?
(a) eat = e (b) eat = e2 (c) ea(t+2) = eate2a.

Solution

(a)eat = e at t = 1/a.

(b) eat = e2 at t = 2/a.

(c) ea(t+2) = eate2a at all t.

8 If you multiply the series foreat in Problem5 by itself you should get the series for
e2at. Multiply the first 3 terms by the same3 terms to see the first3 terms ine2at.

Solution (1 + at+
1

2
a2t2)(1 + at+

1

2
a2t2) = 1 + 2at+

(
1 +

1

2
+

1

2

)
a2t2 + · · ·

This agrees withe2at = 1 + 2at+
1

2
(2at)2 + · · ·

9 (recommended) Findy(t) if dy/dt = ay and y(T ) = 1 (instead ofy(0) = 1).

Solution
dt

dt
= ay gives y(t) = Ceat. When CeaT = 1 at t = T, this gives

C = e−aT and y(t) = ea(t−T).

10 (a) If dy/dt = (ln 2)y, explain whyy(1) = 2y(0).

(b) If dy/dt = −(ln 2)y, how isy(1) related toy(0) ?

Solution

(a)
dy

dt
= (ln 2)y → y(t) = y(0)et(ln 2) → y(1) = y(0)eln 2 = 2y(0).

(b)
dy

dt
= −(ln 2)y → y(t) = y(0)e−t(ln 2) → y(1) = y(0)e−ln 2 =

1

2
y(0).

11 In a one-year investment ofy(0) = $100, suppose the interest rate jumps from
6% to 10% after six months. Does the equivalent rate for a whole year equal 8%,
or more than8%, or less than8% ?

Solution We solve the equation in two steps, first fromt = 0 to t = 6 months, and
then fromt = 6 months tot = 12 months.
y(t) = y(0)eat y(t) = y(0.5)eat

y(0.5) = $100e0.06×0.5 = $100e.03 y(1) = $103.05e0.1×0.5 = $103.05e.05

= $103.05 = $108.33
If the money was invested for one year at 8% the amount att = 1 would be:

y(1) = $100e0.08×1 = $108.33.

The equivalent rate for the whole year is indeed exactly 8%.
12 If you invest y(0) = $100 at 4% interest compounded continuously, then

dy/dt = .04y. Why do you have more than$104 at the end of the year ?

Solution The quantitative reason for why this is happening is obtained from solving
the equation:

dy

dt
= 0.04y → y(t) = y(0)e.04t

y(1) = 100e0.04 ≈ $104.08.
.The intuitive reason is thatthe interest accumulates interest.
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13 What linear differential equationdy/dt = a(t)y is satisfied byy(t) = ecos t ?

Solution The chain rule forf(u(t)) hasy(t) = f(u) = eu andu(t) = sin t :
dy

dt
=

df(u(t))

dt
=

df

dt

du

dt
= eu cos t = y cos t. Thena(t) = cos(t).

14 If the interest rate isa = 0.1 per year iny′ = ay, how many years does it take for
your investment to be multiplied bye ? How many years to be multiplied bye2 ?

Solution If the interest rate isa = 0.1, theny(t) = y(0)e0.1t. For t = 10, the value is
y(t) = y(0) e. For t = 20, the value isy(t) = y(0) e2.

15 Write the first four terms in the series fory = et
2

. Check thatdy/dt = 2ty.

Solution
y = et

2

= 1 + t2 +
1

2
t4 +

1

6
t6 + · · ·

dy

dt
= 2t+ 2t3 + t5 + · · · = 2t

(
1 + t2 +

1

2
t4 + · · ·

)
= 2tet

2

.

16 Find the derivative ofY (t) =
(
1 + t

n

)n
. If n is large, thisdY/dt is close toY !

Solution The derivative ofY (t) =
(
1 + t

n

)n
with respect tot is n( 1n )

(
1 + t

n

)n−1
=(

1 + t
n

)n−1
. For largen the extra factor1 + t

n is nearly1, anddY/dt is nearY .

17 (Key to future sections). Suppose the exponent iny = eu(t) is u(t) = integral ofa(t).
What equationdy/dt = y does this solve ? Ifu(0) = 0 what is the starting
valuey(0) ?

Solution Differentiatingy = e
∫
a(t) dt with respect tot by the chain rule yieldsy ′ =

a(t)e
∫
a(t) dt. Thereforedy/dt = a(t)y. If u(0) = 0 we havey(0) = eu(0) = 1.

18 The Taylor series comes fromed/dxf(x), when you write outed/dx = 1 + d/dx +
1
2 (d/dx)

2 + · · · as a sum of higher and higher derivatives. Applying the series tof(x)
atx = 0 would give the valuef + f ′ + 1

2f
′′ + · · · atx = 0.

The Taylor series says : This is equal tof(x) atx = .

Solution
f(1) = f(0) + 1f ′(0) +

1

2
12f ′′(0) + · · · This is exactly

f(1) =

(
1 +

d

dx
+

1

2

(
d

dx

)2

+ · · ·
)
f(x) at x = 0.

19 (Computer or calculator, 2.xx is close enough) Find the timet when et = 10.
The initial y(0) has increased by an order of magnitude—a factor of10. The
exact statement of the answer ist = . At what timet doeset reach100?

Solution The exact time whenet = 10 is t = ln 10. This ist ≈ 2.30 or 2.3026.

Then the time wheneT = 100 isT = ln 100 = ln 102 = 2 ln 10 ≈ 4.605.

Note that the time whenet = 1
10 is t = − ln 10 and not t = 1

ln 10 .

20 The most important curve in probability is the bell-shaped graph of e−t2/2.
With a calculator or computer find this function att = −2,−1, 0, 1, 2. Sketch
the graph ofe−t2/2 from t = −∞ to t = ∞. It never goes below zero.

Solution At t = 1 andt = −1, we havee−t2/2 = e−1/2 = 1/
√
e ≈ .606

At t = 2 andt = −2, we havee−t2/2 = e−2 ≈ .13.
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21 Explain why y1 = e(a+b+c)t is the same asy2 = eatebtect. They both start at
y(0) = 1. They both solve what differential equation ?

Solution The exponent rule is used twice to finde(a+b+c) t = eat+bt+ct = eat+btect =
eatebtect.

This function must solvedy
dt

= (a + b + c)y. The product rule confirms this.

22 For y ′ = y with a = 1, Euler’s first step choosesY1 = (1 + ∆t)Y0. Backward
Euler choosesY1 = Y0/(1 −∆t). Explain why1 + ∆t is smaller than the exacte∆t

and1/(1−∆t) is larger thane∆t. (Compare the series for1/(1− x) with ex.)

Solution 1 + ∆t is certainly smaller thane∆t = 1 +∆t+ 1
2 (∆t)2 + 1

6 (∆t)3 + · · ·
1

1−∆t = 1+∆t+(∆t)2+(∆t)3+ · · · is larger thane∆t, because the coefficients drop
below1 in e∆t.

Problem Set 1.4, page 27

1 All solutions tody/dt = −y + 2 approach the steady state wheredy/dt is zero and
y = y∞ = . That constanty = y∞ is a particular solutionyp.

Which yn = Ce−t combines with this steady stateyp to start fromy(0) = 4?
This question choseyp + yn to bey∞+ transient(decaying to zero).

Solution y∞ = 2 = yp at the steady state whendydt = 0. Thenyn = 2e−t gives
y = yn + yp = 2 + 2e−t = 4 at t = 0.

2 For the same equationdy/dt = −y + 2, choose the null solutionyn that starts from
y(0) = 4. Find the particular solutionyp that starts fromy(0) = 0.
This splitting choosesyn andyp aseaty(0) + integral ofea(t−T )q in equation (4).

Solution For the same equation as 11.4.1,yn = 4e−t has the correcty(0) = 4. Now
yp must be2− 2e−t to start atyp(0) = 0. Of courseyn + yp is still 2 + 2e−t.

3 The equationdy/dt = −2y+8 also has two natural splittingsyS + yT = yN + yP :

1. Steady (yS = y∞) + Transient (yT → 0). What are those parts ify(0) = 6?

2. (y ′

N = −2yN from yN(0) = 6) + (y ′

P = −2yP + 8 starting fromyP (0) = 0).

Solution 1. yS = 4 (when dy
dt = 0: steady state) andyT = 2e−2t.

2. yN = 6e−2t andyP = 4− 4e−2t starts atyP (0) = 0.

AgainyS + yT = yN + yP : two splittings ofy.
4 All null solutions tou− 2v = 0 have the form(u, v) = (c, ).

One particular solution tou− 2v = 3 has the form(u, v) = (7, ).

Every solution tou− 2v = 3 has the form(7, ) + c(1, ).

But also every solution has the form(3, ) + C(1, ) for C = c+ 4.

Solution All null solutions tou− 2v = 0 have the form(u, v) = (c, 1
2
c).

One particular solution tou− 2v = 3 has the form(u, v) = (7, 2).

Every solution tou− 2v = 3 has the form(7, 2) + c(1, 1
2
).

But also every solution has the form(3, 0) + C(1, 1
2
). HereC = c+ 4.



8 Chapter 1. First Order Equations

5 The equationdy/dt = 5 with y(0) = 2 is solved byy = . A natural split-
ting yn(t) = andyp(t) = comes fromyn = eaty(0) andyp =

∫
ea(t−T )5 dT .

This small example hasa = 0 (soay is absent) andc = 0 (the source isq = 5e0t).
Whena = c we have “resonance.” A factort will appear in the solutiony.

Solution dy/dt = 5 with y(0) = 2 is solved byy = 2+5t. A natural splittingyn(t) =
2 andyp(t) = 5t comes fromyn(0) = y(0) andyp =

∫
ea(t−s)5ds = 5t(sincea = 0).

Starting with Problem 6, choose the very particularyp that starts from yp(0) = 0.

6 For these equations starting aty(0) = 1, find yn(t) andyp(t) andy(t) = yn + yp.
(a) y′ − 9y = 90 (b) y′ + 9y = 90

Solution (a) Since the forcing function isa we use equation 6:

yn(t) = e9t

yp(t) = 90
9 (e9t − 1) = 10(e9t − 1)

y(t) = yn(t) + yp(t) = e9t + 10(e9t − 1) = 11e9t − 10.
.(b) We again use equation 6, noting thata = −9. The steady state will bey∞ = 10.

yn(t) = e−9t

yp(t) = 90
−9 (e

−9t − 1)

y(t) = yn(t) + yp(t) = e−9t − 10(e−9t − 1) = 10− 9e−9t.

7 Find a linear differential equation that producesyn(t) = e2t andyp(t) = 5(e8t − 1).

Solution yn = e2t needsa = 2. Thenyp = 5(e8t − 1) starts fromyp(0) = 0,
telling us thaty(0) = yn(0) = 1. Thisyp is a response to the forcing term(e8t + 1).
So the equation fory = e2t + 5e8t − 5 must bedy

dt = 2y + (e8t + 1). Substitutey :

2e2t + 40e8t = 2e2t + 10e8t − 10 + (e8t + 1).
Comparing the two sides,C = 30 andD = 10. Harder than expected.

8 Find a resonant equation(a = c) that producesyn(t) = e2t andyp(t) = 3te2t.

Solution Clearlya = c = 2. The equation must bedy/dt = 2y +Be2t. Substituting
y = e2t + 3te2t gives2e2t + 3e2t + 6te2t = 2(e2t + 3te2t) +Be2t and thenB = 3.

9 y ′ = 3y + e3t hasyn = e3ty(0). Find the resonantyp with yp(0) = 0.

Solution The resonantyp has the formCte3t starting fromyp(0) = 0. Substitute in
the equation:
dy

dt
= 3y + e3t is Ce3t + 3Cte3t = 3Cte3t + e3t and thenC = 1.

Problems 10–13 are abouty′ − ay = constant sourceq.

10 Solve these linear equations in the formy = yn + yp with yn = y(0)eat.

(a) y′ − 4y = −8 (b) y′ + 4y = 8 Which one has a steady state ?

Solution (a) y ′ − 4y = −8 has a = 4 and yp = 2. But 2 is not a steady state at
t = ∞ because the solutionyn = y(0)e4t is exploding.

(b) y ′ + 4y = 8 has a = −4 and againyp = 2. This 2 is a steady state because
a < 0 andyn → 0.
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11 Find a formula fory(t) with y(0) = 1 and draw its graph. What isy∞ ?

(a) y′ + 2y = 6 (b) y′ + 2y = −6

Solution (a) y′ + 2y = 6 has a = −2 and y∞ = 3 and y = y(0)e−2t + 3.

(b) y′ + 2y = −6 has a = −2 and y∞ = −3 and y = y(0)e−2t − 3.
12 Write the equations in Problem 11 asY ′ = −2Y with Y = y − y∞. What isY (0)?

Solution With Y = y − y∞ andY (0) = y(0) − y∞, the equations in 1.4.11 are
Y ′ = −2Y . (The solutions areY (t) = Y (0)e−2t which is y(t) − y∞ = (y(0) −
y∞)e−2t or y(t) = y(0)e−2t + y∞(1− e−2t).

13 If a drip feedsq = 0.3 grams per minute into your arm, and your body eliminates the
drug at the rate6y grams per minute, what is the steady state concentrationy∞ ? Then
in = out andy∞ is constant. Write a differential equation forY = y − y∞.

Solution The steady state hasyin = yout or 0.3 = 6y∞ or y∞ = 0.05. The equa-
tion for Y = y − y∞ is Y ′ = aY = −6Y . The solution isY (t) = Y (0)e−6t or
y(t) = y∞ + (y(0)− y∞)e−6t.

Problems 14–18 are abouty′ − ay = step functionH(t − T ) :
14 Why isy∞ the same fory′ + y = H(t− 2) andy′ + y = H(t− 10)?

Solution Noticea = −1. The steady states are the same because the step functions
H(t− 2) andH(t− 10) are the same after timet = 10.

15 Draw the ramp function that solvesy ′ = H(t− T ) with y(0) = 2.

Solution The solution is a ramp withy(t) = y(0) = 2 up to timeT and then
y(t) = 2 + t− T beyond timeT .

16 Findyn(t) andyp(t) as in equation (10), with step function inputs starting atT = 4.

(a) y′ − 5y = 3H(t− 4) (b) y′ + y = 7H(t− 4) (What isy∞ ? )

Solution (a) yp(t) =
3
5 (e

5(t−4) − 1) for t ≥ 4 with no steady state.

(b) yp(t) =
7
−1 (e

−(t−4) − 1) for t ≥ 4 with a = −1 and y∞ = 7.

17 Suppose the step function turns on atT = 4 and off atT = 6. Then q(t) =
H(t − 4) − H(t − 6). Starting fromy(0) = 0, solvey′ + 2y = q(t). What is
y∞ ?

Solution The solution has 3 parts. Firsty(t) = y(0) = 0 up tot = 4. ThenH(t− 4)
turns on andy(t) = 1

−2 (e
−2(t−4) − 1). This reachesy(6) = − 1

2 (e
−4 − 1) at time

t = 6. After t = 6, the source is turned off and the solution decays to zero:y(t) =
y(6)e−2(t−6).

Method 2: We use the same steps as in equations (8) - (10), noting thaty(0) = 0.

(e2ty) ′ = e2tH(t− 4)− e2tH(t− 6)

e2ty(t)− e2ty(0) =

t∫

4

e2xdx−
t∫

6

e2xdx

e2ty(t) = − 1
2 (e

2·4 − e2t)H(t− 4) + 1
2 (e

2·6−e2t)H(t− 6)

y(t) = − 1
2 (e

8−2t − 1)H(t− 4) + 1
2 (e

12−2t − 1)H(t− 6)
.
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For t → ∞, we have:

y∞ =
1

2
(e8−2·∞ − 1)H(t− 4) +

1

2
(e12−2·∞ − 1)H(t− 6) = 0.

18 Supposey′ = H(t− 1) +H(t− 2) +H(t− 3), starting aty(0) = 0. Findy(t).

Solution We integrate both sides of the equation.
t∫

0

y ′(t)dt =

t∫

0

(H(t− 1) +H(t− 2) +H(t− 3))dt

y(t)− y(0) = R(t− 1) +R(t− 2) +R(t− 3)

y(t) = R(t− 1) +R(t− 2) +R(t− 3)

.R(t) is the unit ramp function= max(0, t).

Problems 19–25 are about delta functions and solutions toy′ − ay = q δ(t − T ).

19 For all t > 0 find these integralsa(t), b(t), c(t) of point sources and graphb(t) :

(a)

t∫

0

δ(T −2) dT (b)

t∫

0

(δ(T − 2)− δ(T − 3)) dT (c)

t∫

0

δ(T −2)δ(T −3)dT

Solution For t < 2, the spike inδ(t− 2) does not appear in the integral from0 to t :

(a)

t∫

0

δ(T − 2)dT =

{
0 if t < 2
1 if t ≥ 2

The integral (b) equals1 for 2 ≤ t < 3. This is the differenceH(t− 2)−H(t− 3).
The integral (c) iszerobecauseδ(T − 2)δ(T − 3) is everywhere zero.

20 Why are these answers reasonable ? (They are all correct.)

(a)

∞∫

−∞

etδ(t)dt = 1 (b)

∞∫

−∞

(δ(t))2dt = ∞ (c)

∞∫

−∞

eT δ(t− T )dT = et

Solution (a) The differenceetδ(t)−δ(t) is everywhere zero (notice it is zero att = 0).
So etδ(t) andδ(t) have the same integral (from−∞ to ∞ that integral is1). This
reasoning can be made more precise.

(b) This is the difference between the step functionsH(t − 2) andH(t − 3). So it
equals1 for 2 ≤ t ≤ 3 and otherwise zero.

(c) As in part (a), the difference betweeneT δ(t − T ) andetδ(t− T ) is zero att = T
(and also zero at every othert). So∞∫

−∞

eT δ(t− T )dT = et
∞∫

−∞

δ(t− T )dT = et.

21 The solution toy ′ = 2y + δ(t − 3) jumps up by1 at t = 3. Before and aftert = 3,
the delta function is zero andy grows like e2t. Draw the graph ofy(t) when
(a) y(0) = 0 and (b) y(0) = 1. Write formulas fory(t) before and aftert = 3.
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Solution (a) y(0) = 0 givesy(t) = 0 until t = 3. Theny(3) = 1 from the jump.
After the jump we are solvingy ′ = 2y andy grows exponentially fromy(3) = 1. So
y(t) = e2(t−3).

(b) y(0) = 1 givesy(t) = e2t until t = 3. The jump producesy(3) = e6 + 1. Then
exponential growth givesy(t) = e2(t−3)(e6 + 1) = e2t + e2(t−3). One part grows
from t = 0, one part grows fromt = 3 as before.

22 Solve these differential equations starting aty(0) = 2 :

(a)y′ − y = δ(t− 2) (b) y′ + y = δ(t− 2). (What isy∞ ?)

Solution (a) y ′ − y = δ(t − 2) starts withy(t) = y(0)et = 2et up to the jump at
t = 2. The jump brings another term intoy(t) = 2et + et−2 for t ≥ 2. Note the jump
of et−2 = 1 at t = 2.

(b) y ′ + y = δ(t − 2) starts withy(t) = y(0)e−t = 2e−t up to t = 2. The jump
of 1 at t = 2 starts another exponentiale−(t−2) (decaying becausea = −1). Then
y(t) = 2e−t + e−(t−2).

23 Solvedy/dt = H(t− 1) + δ(t− 1) starting fromy(0) = 0 : jump and ramp.

Solution Nothing happens andy(t) = 0 until t = 1. ThenH(t − 1) starts a ramp
in y(t) and there is a jump fromδ(t − 1). So y(t) = ramp + constant =
max(0, t− 1) + 1.

24 (My small favorite) What is the steady statey∞ for y ′ = −y + δ(t− 1) +H(t− 3)?

Solution dy/dt = 0 at the steady stateyss. Then−y + δ(t − 1) + H(t − 3) is
−y∞ + 0+ 1 andy∞ = 1.

25 Which q andy(0) in y′ − 3y = q(t) produce the step solutiony(t) = H(t− 1)?

Solution We simply substitute the particular solutiony(t) = H(t−1) into the original
differential equation withy(0) = 0) :

δ(t− 1)− 3H(t− 1) = q(t)

Notice howδ(t− 1) in q(t) produces the jumpH(t− 1) in y, and then−3H(t− 1) in
q(t) cancels the−3y and keepsdy/dt = 0 aftert = 1.

Problems 26–31 are about exponential sourcesq(t) = Qect and resonance.
26 Solve these equationsy′ − ay = Qect as in (19), starting from y(0) = 2 :

(a) y′ − y = 8e3t (b) y′ + y = 8e−3t (What isy∞ ?)

Solution
(a) a = 1, c = 3 and y(0) = 2 (b) a = −1, c = −3 and y(0) = 2

y(t) = y(0)eat + 8
ect − eat

c− a
y(t) = y(0)eat + 8

e−3t − e−t

c− a

y(t) = 2et + 8
e3t − et

3− 1
y(t) = 2e−t + 8

e−3t − e−t

−3− (−1)

y(t) = 2et + 4(e3t − et) y(t) = 2e−t − 4(e−3t − e−t)

y(t) = 4e3t − 2et y(t) = −4e−3t + 2e−t

y goes to∞ as t → ∞ y goes to0 as t → ∞
.
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27 Whenc = 2.01 is very close toa = 2, solvey′ − 2y = ect starting fromy(0) = 1. By
hand or by computer, draw the graph ofy(t) : near resonance.

Solution We substitute the valuesa = 2, c = 2.01 and y(0) = 1 into equation (18) :

y(t) = y(0)eat +
ect − eat

c− a

y(t) = 2eat +
e2t − e2.01t

2.01− 2

y(t) = 2e2t + 100(e2t − e2.01t)

y(t) = 101e2t − 100e2.01t

The graph of this function shows the “near resonance” whenc ≈ a.

28 Whenc = 2 is exactly equal toa = 2, solvey′ − 2y = e2t starting fromy(0) = 1.
This is resonance as in equation (20). By hand or computer, draw the graph ofy(t).

Solution We substitutea = 2, c = 2 (resonance) andy(0) = 1 into equation (19) :
y(t) = y(0)eat + teat = e2t + te2t.

29 Solvey′ + 4y = 8e−4t + 20 starting fromy(0) = 0. What isy∞ ?

Solution We havea = −4, c = −4 and y(0) = 0. Equation (19) with resonance
leads to8te−4t. The constant source20 leads to20(e−4t − 1). By linearity
y(t) = 8te−4t + 20(e−4t − 1). The steady state isy∞ = −20.

30 The solution toy′ − ay = ect didn’t come from the main formula (4), but it could.
Integratee−asecs in (4) to reach the very particular solution(ect − eat)/(c− a).
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Solution
y(t) = eaty(0) + eat

t∫

0

e−aT q(T )dT

= eaty(0) + eat
t∫

0

e−aT ecTdT

= eaty(0) + eat
t∫

0

e(c−a)TdT

= eaty(0) + eat
(
e(c−a)t − e0

c− a

)

= eaty(0) +
ect − eat

c− a
= yn + yvp

.31 The easiest possible equationy′ = 1 has resonance! The solutiony = t shows the
factort. What number is the growth ratea and also the exponentc in the source ?

Solution The growth rate iny ′ = 1 or dy/dt = e0t is a = 0. The source isect

with c = 0. Resonancea = c. The resonant solutiony(t) = teat is y = t, certainly
correct for the equationdy/dt = 1.

32 Suppose you know two solutionsy1 andy2 to the equationy ′ − a(t)y = q(t).

(a) Find a null solution toy ′ − a(t)y = 0.
(b) Find all null solutionsyn. Find all particular solutionsyp.

Solution (a) y = y1 − y2 will be a null solution by linearity.

(b) y = C(y1−y2) will give all null solutions. Theny = C(y1−y2)+y1 will give all
particular solutions. (Alsoy = c(y1 − y2) + y2 will also give all particular solutions.)

33 Turn back to the first page of this Section 1.4. Without looking, can you write down a
solution toy ′ − ay = q(t) for all four source functionsq,H(t), δ(t), ect ?

Solution Equations (5), (7), (14), (19).

34 Three of those sources in Problem33 are actually the same, if you choose the right
values forq andc andy(0). What are those values ?

Solution The sourcesq = 1 andq = H(t) andq = e0t are all the same fort ≥ 0.

35 What differential equationsy ′ = ay+q(t)would be solved byy1(t) andy2(t) ? Jumps,
ramps, corners—maybe harder than expected (math.mit.edu/dela/Pset1.4).

a

0 1 2

y1(t) y2(t)

e
t
− 1 e

2−t
− 1

0 1 2
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Solution (a)
dy1
dt

= 1− δ(t− 1)− δ(t− 2) with a = 0.

(b)
dy2
dt

= y2 + 1 up tot = 1. Add in−2e δ(t− 1) to drop the slope frome to −e at

t = 1. After t = 1 we needdy2/dt = −y2 − 1 to keepy2 = e2−t − 1.

Problem Set 1.5, page 37

Problems 1-6 are about the sinusoidal identity (9). It is stated again in Problem 1.

1 These steps lead again to the sinusoidal identity. This approach doesn’t start with
the usual formula cos(ωt − φ) = cos ωt cos φ + sin ωt sin φ from trigonometry.
The identity says :

If A + iB = Reiφ then A cosωt + B sinωt = R cos(ωt − φ).

Here are the four steps to find that real part ofRei(ωt−φ). Explain Step3 whereRe−iφ

equalsA− iB:

R cos (ωt − φ) = Re
[
Rei(ωt−φ)

]
= Re

[
eiωt(Re−iφ)

]
= (what isRe−iφ ?)

= Re[(cos ωt+ i sin ωt) (A− iB)] = A cosωt+ B sinωt.

Solution The key point is that ifA+ iB = Reiφ thenA− iB = Re−iφ (the complex
conjugate).

2 To expresssin 5t+ cos 5t asR cos (ωt− φ), what areR andφ?

Solution The sinusoidal identity hasA = 1, B = 1, and ω = 5. Therefore:

R2 = A2+B2 = 2 → R =
√
2 and tanφ =

1

1
→ φ =

π

4
. Answer

√
2 cos

(
5t− π

4

)
.

3 To express6 cos 2t+ 8 sin 2t asR cos (2t− φ), what areR and tanφ andφ ?

Solution Use the Sinusoidal Identity withA = 6, B = 8 and ω = 2.

R2 = A2 +B2 = 62 + 82 = 100 and R = 10

tanφ = B
A = 8

6 = 4
3 and φ is in the positive quadrant0 to π

2

(
not π to 3π

2

)

6 cos(2t) + 8 sin(2t) = 10 cos

(
2t− arctan

(
4

3

))

4 Integratecos ωt to find (sin ωt)/ω in this complex way.

(i) dyreal/dt = cosωt is the real part ofdycomplex/dt = eiωt.

(ii) Take the real part of the complex solution.

Solution (i) The complex equationy ′ = eiωt leads toy =
eiωt

iω
.

(ii) Take the real part of that solution (since the real part of the right side iscosωt).

Re
eiωt

iω
= Re

[
cosωt

iω
+

sinωt

ω

]
=

sinωt

ω
.
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5 The sinusoidal identity forA = 0 andB = −1 says that− sinωt = R cos(ωt − φ).
FindR andφ.

SolutionR2 = A2 +B2 = 02 + 12 = 1 → R = 1

tanφ = 1
0 = ∞ → φ = π

2 or 3π
2 : Here it is 3π

2 , since A+ iB = −i

Therefore we have
SOLUTION: − sinωt = cos(ωt− 3π

2 )

CHECK: t = 0 gives 0 = 0, ωt = π
2 gives − 1 = −1.

6 Why is the sinusoidal identity useless for the sourceq(t) = cos t+ sin 2t?

Solution The sinusoidal identity needs the sameω in all terms. But the first term has
ω = 1 while the second term hasω = 2.

7 Write 2+3i asreiφ, so that 1
2+3i =

1
r e

−iφ. Then writey = eiωt/(2+3i) in polar form.
Then find the real and imaginary parts ofy. And also find those real and imaginary parts
directly from(2− 3i)eiωt/(2− 3i)(2 + 3i).

Solution r =
√
22 + 32 =

√
13 and φ = arctan(3/2)

2 + 3i =
√
13 ei arctan(3/2)

y = eiωt/(2 + 3i) =
√
13 ei arctan(3/2)+iωt

Writing this in cartesian (rectangular) form gives
real part=

√
13 cos(arctan(3/2) + ωt) = 2 cos(ωt)− 3 sin(ωt)

imag part=
√
13 sin(arctan(3/2) + ωt) = 3 cos(ωt) + 2 sin(ωt)

.We can also find the real and imaginary parts from:
(2− 3i)eiωt

(2− 3i)(2 + 3i)
=

2− 3i

13
eiωt =

2− 3i

13
(cos(ωt) + i sin(ωt)).

8 Write these functionsA cosωt + B sinωt in the formR cos(ωt − φ) : Right triangle
with sidesA, B, R and angleφ.

(1) cos 3t− sin 3t (2)
√
3 cosπt− sinπt (3) 3 cos(t− φ) + 4 sin(t− φ)

Solution (1) cos 3t− sin 3t =
√
2 cos(3t− 7π

4 ) =
√
2 cos(3t+ π

4 ).

Checkt = 0 : 1 =
√
2 cos(− 7π

4 ) =
√
2 cos(π4 ).

(2)
√
3 cosπt− sinπt = 2 cos(πt+ π

6 ).

Check:(
√
3)2 + (−1)2 = 22 At t = 0 :

√
3 = 2 cos 30 ◦.

(3) 3 cos(t− φ) + 4 sin(t− φ) = 5 cos(t− φ− tan−1 4
3 ).

Problems 9-15 solve real equations using the real formula (3) for M andN .
9 Solvedy/dt = 2y + 3 cos t+ 4 sin t after recognizinga andω. Null solutionsCe2t.

Solution dy
dt = 2y + 3 cos t+ 4 sin t = 2y + 5 cos(t− φ) with tanφ = 4

3 .

Method 1: Look fory = M cos t+N sin t.

Method 2: SolvedYdt = 2Y + 5ei(t−φ) and theny = real part ofY .

Y = 5
i−2e

i(t−φ) = 5
5 (−i− 2)ei(t−φ) and y = −2 cos(t− φ) + sin(t− φ).
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10 Find a particular solution tody/dt = −y − cos 2t.

Solution Substitutey = M cos t+N sin t into the equation to findM andN

−M sin t+N cos t = −M cos t−N sin t− cos 2t

Match coefficients ofcos t andsin t separately to findM andN .

N = −M − 1 and −M = −N give M = N = −1

2
Note: This is called the “method of undetermined coefficients” in Section 2.6.

11 What equationy ′ − ay = A cosωt+B sinωt is solved byy = 3 cos 2t+ 4 sin 2t ?

Solution Clearlyω = 2. Substitutey into the equation:
−6 sin 2t+ 8 cos 2t− 3a cos 2t− 4a sin 2t = A cos 2t+B sin 2t.

Match separately the coefficients ofcos 2t andsin 2t:
A = 8− 3a and B = −6− 4a

.
12 The particular solution toy ′ = y + cos t in Section 4 isyp = et

∫
e−s cos s ds. Look

this up or integrate by parts, froms = 0 to t. Compare thisyp to formula (3).

Solution That integral goes from0 to t, and it leads toyp = 1
2 (sin t− cos t+ et)

If we use formula (3) witha = 1, ω = 1, A = 1, B = 0 we get

M = −aA+ ωB

ω2 + a2
=

−1

2
N =

ωA− aB

ω2 + a2
=

1

2

This solutiony = M cos t+N sin t =
− cos t+ sin t

2
is a different particular solution

(not starting fromy(0) = 0). The difference is a null solution12e
t.

13 Find a solutiony = M cos ωt+N sin ωt to y ′ − 4y = cos 3t+ sin 3t.

Solution Formula (3) witha = 4, ω = 3, A = B = 1 gives

M = − 4 + 3

9 + 16
= − 7

25
N =

3− 4

9 + 16
= − 1

25
.

14 Find the solution toy ′ − ay = A cos ωt+B sin ωt starting from y(0) = 0.

Solution One particular solutionM cosωt + N sinωt comes from formula (3). But
this starts fromyp(0) = M . So subtract off the null solutionyn = Meat to get the very
particular solutionyvp = yp − yn that starts fromyvp(0) = 0.

15 If a = 0 show thatM andN in equation (3) still solvey ′ = A cos ωt+B sin ωt.

Solution Formula (3) still applies witha = 0 and it gives

M = −ωB

ω2
N =

ωA

ω2
y = −B

ω
cosωt+

A

ω
sinωt.

This is the correct integral ofA cosωt+B sinωt in the differential equation.
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Problems 16-20 solve the complex equationy ′ − ay = Rei(ωt−φ).

16 Write down complex solutionsyp = Y eiωt to these three equations :
(a) y ′ − 3y = 5e2it (b) y ′ = Rei(ωt−φ) (c) y ′ = 2y − eit

Solution (a) y ′ − 3y = 5e2it hasiω Y eiωt − 3Y eiωt = 5e2it.

Soω = 2 andY = 5
2i−3 .

(b) y ′ = Rei(ωt−φ) has iωY eiωt = Rei(ωt−φ). SoY = R
iω e

−iφ and the solution is
y = Y eiωt = R

iω e
i(ωt−φ).

(c) y ′ = 2y − eit has ω = 1 and iY eit = 2Y eit − e−it.

ThenY = −1
i−2 = 1

2−i =
2+i
5 andy = Y eit.

17 Find complex solutionszp = Zeiωt to these complex equations :
(a)z ′ + 4z = e8it (b) z ′ + 4iz = e8it (c) z ′ + 4iz = e8t

Solution (a) z ′ + 4z = e8it has z = Ze8it with 8iZ + 4Z = 1 and Z = 1
4+8i =

4−8i
16+64 = 1

20 (1− 2i).

(b) z ′ + 4iz = e8it is like part (a) but4 changes to4i. ThenZ = 1
4i+8i =

1
12i = − i

12 .

(c) z ′ + 4iz = e8t has z = Ze8t. Then 8Ze8t + 4iZe8t gives Z = 1
8+4i =

8−4i
82+42 .

18 Start with the real equationy ′−ay = R cos (ωt−φ). Change to the complex equation
z ′ − az = Rei(ωt−φ). Solve forz(t). Then take its real partyp = Rez.

Solution Putz = Zei(ωt−φ) in the complex equation to findZ:

iωZ − aZ = R givesZ =
R

−a+ iω
=

R(−a− iω)

a2 + ω2
.

The real part ofz = Z(cos(ωt− φ) + i sin(ωt− φ)) is
R

a2+ω2 (−a cos(ωt− φ) + ω sin(ωt− φ)).

19 What is the initial valueyp(0) of the particular solutionyp from Problem 18 ?
If the desired initial value isy(0), how much of the null solutionyn = Ceat

would you add toyp ?

Solution That solution to 18 starts fromyp(0) = R
a2+ω2 (−a cos(−φ)+ω sin(−φ)) at

t = 0. So subtract that number timeseat to get the very particular solution that starts
from yvp(0) = 0.

20 Find the real solution toy ′−2y = cos ωt starting fromy(0) = 0, in three steps : Solve
the complex equationz ′ − 2z = eiωt, take yp = Rez, and add the null
solutionyn = Ce2t with the rightC.

Solution Step 1.z ′ − 2Z = eiωt is solved byz = Zeiωt with iωZ − 2Z = 1 and
Z = 1

−2+iω = −2−iω
4+ω2 .

Step 2. The real part ofZeiωt is yp = 1
4+ω2 (−2 cosωt+ ω sinωt).

Step 3. yp(0) = −2
4+ω2 so yvp = yp + 2

4+ω2 e
2t includes the rightyn = Ce2t for

yvp(0) = 0.
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Problems 21-27 solve real equations by making them complex.First a note onα.

Example 4 wasy ′ − y = cos t − sin t, with growth ratea = 1 and frequencyω = 1.
The magnitude ofiω − a is

√
2 and the polar angle hastanα = −ω/a = −1. Notice :

Bothα = 3π/4 andα = −π/4 have that tangent! How to choose the correct angleα ?
The complex numberiω − a = i− 1 is in thesecond quadrant. Its angle isα = 3π/4.

We had to look at the actual number and not just the tangent of its angle.

21 Find r andα to write eachiω − a asreiα. Then write1/reiα asGe−iα.
(a)

√
3 i+ 1 (b)

√
3 i− 1 (c) i−

√
3

Solution (a)
√
3i + 1 is in the first quadrant (positive quarter0 ≤ θ ≤ π/2) of the

complex plane. The angle with tangent
√
3/1 is 60 ◦ = π/3. The magnitude of

√
3i+1

is r = 2. Then
√
3i+ 1 = 2eiπ/3.

(b)
√
3i − 1 is in the second quadrantπ/2 ≤ θ ≤ π. The tangent is−

√
3, the angle is

θ = 2π/3, the number is2e2πi/3.

(c) i −
√
3 is also in the second quadrant (left from zero and up). Now thetangent

is −1/
√
3, the angle isθ = 150 ◦ = 5π/6. The magnitude is still2, the number is

2e5πi/6.

22 UseG andα from Problem 21 to solve (a)-(b)-(c). Then take the real partof each
equation and the real part of each solution.
(a) y ′ + y = ei

√
3t (b) y ′ − y = ei

√
3t (c) y ′ −

√
3y = eit

Solution (a) y ′ + y = ei
√
3t is solved byy = Y ei

√
3t wheni

√
3Y + Y = 1. Then

Y = 1√
3i+1

= 1
2e

−iπ/3 from Problem 21(a). The real partyreal = 1
2 cos(

√
3t − π/3)

of Y ei
√
3t solves the real equationy ′

real + yreal = cos(
√
3t).

(b) y ′−y = ei
√
3t is solved byy = Y ei

√
3t wheni

√
3Y −Y = 1. ThenY = 1

2e
−2πi/3

from Problem 21(b). the real partyreal = 1
2 cos(

√
3t − 2π/3) solves the real equation

y ′

real − yreal = cos(
√
3t).

(c) y ′ −
√
3y = eit is solved byy = Y eit when iY −

√
3Y = 1. ThenY =

1
2e

−5πi/6 from Problem 21(c). The real partyreal = 1
2 cos(t − 5π/6) of Y eit solves

yreal −
√
3yreal = cos t.

23 Solvey ′ − y = cos ωt + sin ωt in three steps : real to complex, solve complex, take
real part. This is an important example.

Solution Note: I intended to chooseω = 1. Theny ′ − y = cos t + sin t has the
simple solutiony = − sin t. I will apply the 3 steps to this case and then to the harder
problem for anyω.

(1) FindR andφ in the sinusoidal identity to write cosωt + sin ωt as the real part of
Rei(ωt−φ). This is easy for anyω.

[
tanφ =

1

1
so φ =

π

4

]
cosωt+ sinωt =

√
2 cos

(
ωt − π

4

)

(2) Solve y ′ − y = eiωt by y = Ge−iαeiωt. Multiply by Re−iφ to solve
z ′ − z = Rei(ωt−φ).
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ω = 1 y ′ − y = eit hasy = Y eit with iY − Y = 1. ThenY = 1
i−1 = 1√

2
e3πi/4 =

Ge−iα.

z =
(√

2ei(t−π/4)
) (

1√
2
e3πi/4

)
= eiteπi/2 = ieit. The real part ofz is y = − sin t.

Any ω y ′ − y = eiωt leads toiωY − Y = 1 andY =
1

iω − 1
=

1
√
1 + ω2

e−iα

with tanα = ω. Thenz(t) =
(

1
1+ω2 e

−iα
) (√

2ei(ωt−π/4)
)
.

(3) Take the real party(t) = Rez(t). Check thaty ′ − y = cos ωt+ sin ωt.

y(t) = Rez(t) =
√
2

1+ω2 cos(ωt − α − π
4 ). Now we needtanα = ω, cosα = 1√

1+ω2
,

sinα = ω√
1+ω2

. Finally y =
√
2

1+ω2 [cos(ωt− π
4 ) cosα+ sin(ωt− π

4 ) sinα].

24 Solvey ′ −
√
3y = cos t+ sin t by the same three steps witha =

√
3 andω = 1.

Solution (1) cos t+ sin t =
√
2 cos(t− π

4 ).

(2) y = Y eit with iY −
√
3Y = 1 and Y = 1

i−
√
3
= 1

2e
−5πi/6 from 1.5.21(c).

Thenz(t) = (
√
2ei(t−π/4))(12e

−5πi/6).

(3) The real part ofz(t) is y(t) = 1√
2
cos(t− 13π

12 ).

25 (Challenge) Solve y ′ − ay = A cos ωt + B sin ωt in two ways. First, find
R andφ on the right side andG andα on the left. Show that the final real solution
RG cos (ωt− φ− α) agrees withM cos ωt+N sin ωt in equation (3).

Solution The first way hasR =
√
A2 +B2 andtanφ = B/A from the sinusoidal

identity. On the left side1/(iω−a) = Ge−iα from equation (8) withG = 1/
√
ω2 + a2

andtanα = −ω/a. Combining, the real solution isy = RG cos(ωt− φ− α).

This agrees withy = M cosωt+N sinωt (equation (3) givesM andN ).

26 We don’t have resonance fory ′ − ay = Reiωt whena andω 6= 0 are real.Why not?
(Resonance appears whenyn = Ceat andyp = Y ect share the exponenta = c.)

Solution Resonance requires the exponentsa andiω to be equal. For reala this only
happens ifa = ω = 0.

27 If you took the imaginary party = Im z of the complex solution toz ′−az = Rei(ωt−φ),
what equation wouldy(t) solve ? Answer first withφ = 0.

Solution Assuminga is real, the imaginary part ofz ′−az = Rei(ωt−φ) is the equation
y ′ − ay = R sin(ωt− φ). With φ = 0 this isy ′ − ay = R sinωt.

Problems 28-31 solve first order circuit equations : not RLC but RL and RC.

+-

V cosωt L R

currentI(t)

+- (+ -

V cosωt R C

q(t) = integral ofI(t)
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28 SolveLdI/dt+ RI(t) = V cos ωt for the currentI(t) = In+ Ip in the RL loop.

Solution Divide the equation byL to producedI/dt−aI = X cosωt with a = −R/L
andX = V/L. In this standard form, equation (3) gives the real solution:

I = M cosωt+N sinωt with M = − aX

ω2 + a2
and N =

ωX

ω2 + a2
.

29 With L = 0 andω = 0, that equation is Ohm’s LawV = IR for direct current.
Thecomplex impedanceZ = R+ iωL replacesR whenL 6= 0 andI(t) = Ieiωt.

LdI/dt+RI(t) = (iωL + R)Ieiωt = V eiωt gives Z I = V .

What is the magnitude|Z| = |R + iωL|? What is the phase angle inZ = |Z|eiθ ?
Is the current|I| larger or smaller because ofL ?

Solution |Z| =
√
R2 + ω2L2 and tan θ = ωL

R .

Since|Z| increases withL, the current|I| must decrease.

30 SolveR
dq

dt
+

1

C
q(t) = V cos ωt for the chargeq(t) = qn + qp in the RC loop.

Solution Dividing byR producesdqdt −aq = X cosωt with a = − 1
RC and X = V

R .

As in Problem 28, equation (3) givesM andN fromω and this a.

31 Why is the complex impedance nowZ = R + 1
iωC ? Find its magnitude|Z|.

Note that mathematics prefersi =
√
−1, we are not conceding yet toj =

√
−1 !

Solution The physicalRC equation for the currentI = dq
dt is RI + 1

C

∫
Idt =

V cosωt = Re(V eiωt).

The solutionI has the same frequency factorXeiωt, and the integral has the factor
eiωt/iω. Substitute into the equation and match coefficients ofeiωt :

RX + 1
iωCX = V isZX = V with impedanceZ = R+ 1

iωC .

Problem Set 1.6, page 50

1 Solve the equationdy/dt = y + 1 up to timet, starting fromy(0) = 4.

Solution We use the formulay(t) = y(0)eat + s
a (e

at − 1) with a = 1 ands = 1 and
y(0) = 4 :

y(t) = 4et + et − 1 = 5et − 1

2 You have$1000 to invest at ratea = 1 = 100%. Compare after one year the result of
depositingy(0) = 1000 immediately with no source (s = 0), or choosingy(0) = 0 and
s = 1000/year to deposit continually during the year. In both casesdy/dt = y + q.

Solution We substitute the values for the different scenarios into the solution formula :

y(t) = 1000et = 1000e at one year

y(t) = 1000et − 1000 = 1000(e− 1) at one year

You get more for depositing immediately rather than during the year.
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3 If dy/dt = y − 1, when does your original deposity(0) = 1
2 drop to zero?

Solution Again we use the equationy(t) = y(0)eat+ s
a (e

at−1) with a = 1 and s =
−1. We sety(t) = 0 and find the timet :

y(t) = y(0)et − et + 1 = et(y(0)− 1) + 1 = 0

et =
1

1− y(0)
= 2 and t = ln 2.

Notice! If y(0) > 1, the balance never drops to zero. Interest exceeds spending.

4 Solve
dy

dt
= y + t2 from y(0) = 1 with increasing source termt2.

Solution Solution formula (12) witha = 1 andy(0) = 1 gives

y(t) = et +

t∫

0

et−ss2ds = et − t(t+ 2) + 2et − 2 = 3et − t(t+ 2)− 2

Check:
dy

dt
= 3et + 2t− 2 equalsy + t2.

5 Solve
dy

dt
=y + et (resonancea = c !) from y(0)=1 with exponential sourceet.

Solution The solution formula witha = 1 and sourceet (resonance!) gives :

y(t) = et +

t∫

0

et−sesds = et +

t∫

0

etds = et(1 + t)

Check by the product rule :
dy

dt
= et(1 + t) + et = y + et.

6 Solve
dy

dt
= y − t2 from an initial deposity(0) = 1. The spendingq(t) = −t2 is

growing. When (if ever) doesy(t) drop to zero ?

Solution

y(t) = et −
t∫

0

et−ss2ds = et + t(t+ 2)− 2et + 2 = −et + t(t+ 2). This definitely

drops to zero (I regret there is no nice formula for that timet).

Check:
dy

dt
= −et + 2t+ 2 = y − t2.

7 Solve
dy

dt
= y − et from an initial deposity(0) = 1. This spending term−et grows at

the sameet rate as the initial deposit (resonance). When (if ever) doesy drop to zero ?

Solution y(t) = et −
t∫

0

et−sesds = et −
t∫

0

etds = et(1− t) (this is zero att = 1)

Check by the product rule :dydt = et(1 − t)− et = y − et.
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8 Solve
dy

dt
= y − e2t from y(0) = 1. At what timeT is y(T ) = 0 ?

Solution y(t) = et −
t∫

0

et−se2sds = et −
t∫

0

et+sds = et + et(1− et) = 2et − e2t

This solution is zero when2et = e2t and2 = et andt = ln 2.

Check thaty = 2et − e2t solves the equation :dydt = 2et − 2e2t = y − e2t.
9 Which solution (y or Y ) is eventually larger ify(0) = 0 andY (0) = 0 ?

dy

dt
= y + 2t or

dY

dt
= 2Y + t.

Solution
dy

dt
= y + 2t

dY

dt
= 2Y + t

y(t) =

t∫

0

et−s · 2sds Y (t) =

t∫

0

e2t−2s · sds

y(t) = 2(−t+ et − 1) Y (t) =
e2t − 1

2
In the long runY (t) is larger thany(t), since the exponent2t is larger thant.

10 Compare the linear equationy ′ = y to the separable equationy ′ = y2 starting from
y(0) = 1. Which solutiony(t) must grow faster ? It grows so fast that it blows up to
y(T ) = ∞ at what timeT ?

Solution
dy

dt
= y

dy

dt
= y2

dy

y
= dt

dy

y2
= dt

y(t)∫

y(0)

du

u
=

t∫

0

dt

y(t)∫

y(0)

du

u2
=

t∫

0

dt

ln(y(t))− ln(y(0)) = t − 1

y(t)
+

1

y(0)
= t

y(t)

y(0)
= et y(t) =

1
1

y(0) − t
=

1

1 − t

y(t) = y(0)et = et

The second solution grows much faster, and reaches a vertical asymptote atT = 1.
11 Y ′ = 2Y has a larger growth factor (becausea = 2) than y ′ = y + q(t).

What sourceq(t) would be needed to keepy(t) = Y (t) for all time ?

Solution dY
dt = 2Y + 1 with for exampleY (0) = y(0) = 0

Y (t) =

t∫

0

e2t−2sds =
e2t − 1

2
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Put this solution intodydt = y + q(t) :

e2t =
e2t − 1

2
+ q(t)

e2t + 1

2
= q(t)

12 Starting fromy(0) = Y (0) = 1, doesy(t) or Y (t) eventually become larger ?
dy

dt
= 2y + et

dY

dt
= Y + e2t.

Solution dy

dt
= 2y + et

y(t) = e2t +

t∫

0

e2t−2sesds = e2t + e2t − et = 2e2t − et

Solving the second equation:
dY

dt
= Y + e2t

Y (t) = et +

t∫

0

et−se2sds = et + e2t − et = e2t is always smaller thany(t).

Questions 13-18 are about the growth factorG(s, t) from time s to time t.

13 What is the factorG(s, s) in zero time ? FindG(s,∞) if a = −1 and ifa = 1.

Solution The solution doesn’t change in zero time soG(s, s) = 1. (Note that the
integral ofa(t) from t = s to t = s is zero. ThenG(s, s) = e0 = 1. We are talking
about change in the null solution, withy ′ = a(t)y. A source term with a delta function
does produce instant change.)

If a = −1, the solution drops to zero att = ∞. SoG(s,∞) = 0.

If a = 1, the solution grows infinitely large ast → ∞. SoG(s,∞) = ∞.
14 Explain the important statement after equation (13) :The growth factorG(s, t) is the

solution toy ′ = a(t)y + δ(t− s). The sourceδ(t− s) deposits$1 at times.

Solution When the source termδ(t − s) deposits $1 at times, that deposit will grow
or decay toy(t) = G(s, t) at timet > s. This is consistent with the main solution
formula (13).

15 Now explain this meaning ofG(s, t) whent is less thans. We go backwards in time.
For t < s, G(s, t) is the value at timet that will grow to equal1 at times.

Whent = 0,G(s, 0) is the “present value” of a promise to pay$1 at times. If the inter-
est rate isa = 0.1 = 10% per year, what is the present valueG(s, 0) of
a million dollar inheritance promised ins = 10 years ?

Solution In fact G(t, s) = 1/G(s, t). In the simplest casey ′ = y of exponential
growth,G(s, t) is the growth factoret−s from s to t. ThenG(t, s) is es−t = 1/et−s.

That numberG(t, s) would be the “present value” at the earlier timet of a promise to
pay $1 at the later times. You wouldn’t need to deposit the full $1 because your deposit
will grow by the factorG(s, t). All you need to have at the earlier time is1/G(s, t),
which then grows to1.



24 Chapter 1. First Order Equations

16 (a) What is the growth factorG(s, t) for the equationy ′ = (sin t)y +Q sin t ?

(b) What is the null solutionyn = G(0, t) to y ′ = (sin t)y wheny(0) = 1 ?

(c) What is the particular solutionyp =
t∫
0

G(s, t) Q sin s ds ?

Solution (a) Growth factor:G(s, t) = exp




t∫

s

sinTdT


 = exp(cos s− cos t).

(b) Null solution:yn = G(0, t) y(0) = e1−cos t.

(c) Particular solution:yp =

t∫

0

ecos s−cos tQ sin s ds

= Qe− cos t [−ecos s]
t
0 = Q

(
e1−cos t − 1

)
. Check yp(0) = Q(e0 − 1) = 0.

17 (a) What is the growth factorG(s, t) for the equationy ′ = y/(t+ 1) + 10 ?

(b) What is the null solutionyn = G(0, t) to y ′ = y/(t+ 1) with y(0) = 1 ?

(c) What is the particular solutionyp = 10
t∫
0

G(s, t) ds ?

Solution (a) G(s, t) = exp




t∫

s

dT

T + 1


 = exp [ln(t+ 1)− ln(s+ 1)] =

t+ 1

s+ 1
.

Null solutionyn = G(0, t) y(0) = exp [ln(t + 1)] = t + 1 since ln(0 + 1) = 0.

Particular solutionyp = 10

t∫

0

exp [ln(t+ 1)− ln(s+ 1)] ds = 10(t+ 1)

t∫

0

ds

s+ 1
=

10(t+ 1) ln(t+ 1).

18 Why isG(t, s) = 1/G(s, t) ? Why isG(s, t) = G(s, S)G(S, t) ?

Solution Multiplying G(s, t)G(t, s) gives the growth factorG(s, s) from going up
to time t and back to times. This factor isG(s, s) = 1. SoG(t, s) = 1/G(s, t).
Multiplying G(s, S)G(S, t) gives the growth factorG(s, t) from going up froms to S
and continuing fromS to t. In the exampley ′ = y, this iseS−set−S = et−s = G(s, t).

Problems 19–22 are about the “units” or “dimensions” in differential equations.

19 (recommended) Ifdy/dt = ay + qeiωt, with t in seconds andy in meters, what are
the units fora andq andω ?

Solution a is in “inverse seconds”—for examplea = .01 per second.

q is in meters.

ω is in “inverse seconds” or 1/seconds—for exampleω = 2π radians per second.
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20 The logistic equationdy/dt = ay − by2 often measures the timet in years (andy
counts people). What are the units ofa andb ?

Solution a is in “inverse years”—for examplea = 1 percent per year.

b is in “inverse people-years” as inb = 1 percent per person per year.

21 Newton’s Law ismd2y/dt2 + ky = F . If the massm is in grams,y is in meters,
andt is in seconds, what are the units of the stiffnessk and the forceF ?

Solution ky has the same units asmd2y/dt2 sok is in grams per (second)2.

F is in gram-meters per (second)2—the units of force.

22 Why is our favorite exampley ′ = y + 1 very unsatisfactory dimensionally ? Solve it
anyway starting fromy(0) = −1 and fromy(0) = 0.

The three terms iny ′ = y + 1 seem to have different units. The ratea = 1 is hidden
(with its units of 1/time). Also hidden are the units of the source term1.

Solution y(t) = y(0)et+ 1
1 (e

t−1). This is et−1 if y(0) = 0. The solution stays at
steady state ify(0) = −1.

23 The difference equationYn+1 = cYn + Qn producesY1 = cY0 + Q0. Show that the
next step producesY2 = c2Y0 + cQ0+Q1. After N steps, the solution formula forYN

is like the solution formula fory ′ = ay + q(t). Exponentials ofa change to powers of
c, the null solutioneaty(0) becomescNY0. The particular solution

YN = cN−1Q0 + · · ·+QN−1 is like y(t) =

t∫

0

ea(t−s)q(s)ds.

Solution Y2 = cY1 +Q1 = c(cY0 +Q0) +Q1 = c2Y0 + cQ0 +Q1.

The particular solutioncQ0 + Q1 agrees with the general formula whenN = 2. The
null solutionc2Y0 is Step 2 inY0, cY0, c

2Y0, c
3Y0, . . . like eaty(0).

24 Suppose a fungus doubles in size every day, and it weighs a pound after10 days. If
another fungus was twice as large at the start, would it weigha pound in5 days ?

Solution This is an ancient puzzle and the answer is9 days. Starting twice as large
cuts off1 day.

Problem Set 1.7, page 61

1 If y(0) = a/2b, the halfway point on theS-curve is att = 0. Show thatd = b and

y(t) =
a

d e−at + b
=

a

b

1

e−at + 1
. Sketch the classicS-curve — graph of1(e−at + 1)

from y−∞ = 0 to y∞ =
a

b
. Mark the inflection point.

Solution
d =

a

y(0)
− b and y(0) =

a

2b
lead to d =

a
a
2b

− b = 2b− b = b

Thereforey(t) =
a

d e−at + b
=

a

b e−at + b
=

a

b

1

e−at + 1
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2 If the carrying capacity of the Earth isK = a/b = 14 billion people, what will be the
population at the inflection point ? What isdy/dt at that point ? The actual population
was7.14 billion on January1, 2014.

Solution The inflection point comes wherey = a/2b = 7 million. The slopedy/dt is

dy

dt
= ay − by2 = a

a

2b
− b

( a

2b

)2
=

a2

4b
. This is b

( a

2b

)2
= 49b.

3 Equation (18) must give the same formula for the solutiony(t) as equation (16).
If the right side of (18) is calledR, we can solve that equation fory :

y = R

(
1− b

a
y

)
→

(
1 +R

b

a

)
y = R → y =

R(
1 +R b

a

) .

Simplify that answer by algebra to recover equation (16) fory(t).

Solution This problem asks us to complete the partial fractions method which inte-
grateddy/(y − b

ay
2) = adt. The result in equation (18) can be solved fory(t). The

right side of (18) is calledR :

R = eat
y(0)

1− b
ay(0)

= eata
y(0)

a− by(0)
= eat

a

d
.

Then the algebra in the problem statement gives

y =
R

1 +R b
a

=
eat ad

1 + eat bd
= multiply by

de−at

de−at
=

a

de−at + b
.

4 Change the logistic equation toy′ = y + y2. Now the nonlinear term is positive,
andcooperation ofy with y promotes growth. Usez = 1/y to find and solve a linear
equation forz, starting fromz(0) = y(0) = 1. Show thaty(T ) = ∞ whene−T = 1/2.
Cooperation looks bad, the population will explode att = T .

Solution Puty = 1/z and the chain ruledydt = −1
z2

dz
dt into the cooperation equation

y ′ = y + y2 :

− 1

z2
dz

dt
=

1

z
+

1

z2
gives

dz

dt
= −z − 1.

The solution starting fromz(0) = 1 is z(t) = 2e−t − 1. This is zero when2e−T = 1
or eT = 2 orT = ln 2.

At that timez(T ) = 0 meansy(T ) = 1/z(T ) is infinite: blow-up at timeT = ln 2.

5 The US population grew from313, 873, 685 in 2012 to 316, 128, 839 in 2014. If it were
following a logisticS-curve, what equations would give youa, b, d in the formula (4) ?
Is the logistic equation reasonable and how to account for immigration ?

Solution We need a third data point to find all three numbersa, b, d. See Problem
(23). There seems to be no simple formula for those numbers. Certainly the logistic
equation is too simple for serious science. Immigration would give a negative value for
h in the harvesting equationy ′ = ay − by2 − h.
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6 The Bernoulli equation y′ = ay − byn has competition termbyn. Introduce
z = y1−n which matches the logistic case whenn = 2. Follow equation (4) to
show thatz′ = (n− 1)(−az + b). Write z(t) as in(5)-(6). Then you havey(t).

Solution We make the suggested transformation:

z = y1−n

z ′ = (1− n)y−ny ′

dz
dt = (1− n)y−n(ay − byn) = (1− n)(ay1−n − b)

dz
dt = (1− n)(az − b)

z(t) = e(1−n)atz(0)− b

a
(e(1−n)at − 1) =

de(1−n)at + b

a
d = az(0)− b =

a

y(0)
− b

y(t) =
a

de(1−n)at + b

Problems 7–13 develop better pictures of the logistic and harvesting equations.

7 y ′ = y − y2 is solved byy(t) = 1/(de−t + 1). This is anS-curve wheny(0) = 1/2
andd = 1. But show thaty(t) is very different ify(0) > 1 or if y(0) < 0.

If y(0) = 2 thend = 1
2 − 1 = − 1

2 . Show thaty(t) → 1 from above.

If y(0) = −1 thend = 1
−1 − 1 = −2. At what timeT is y(T ) = −∞?

Solution First, y(0) = 2 is abovethe steady-state valuey∞ = a/b = 1/1. Then
d = − 1

2 andy(t) = 1/(1 − 1
2e

−t) is larger than1 and approachesy(∞) = 1/1 from
above ase−t goes to zero.

Second,y(0) = −1 is below theS−curve growing fromy(−∞) = 0 to y(∞) = 1.
The valued = −2 givesy(t) = 1/(−2e−t +1). Whene−t equals12 this isy(t) = 1/0
and the solution blows up. That blowup time ist = ln 2.

8 (recommended) Show those3 solutions toy ′ = y − y2 in one graph ! They start from
y(0) = 1/2 and 2 and −1. The S-curve climbs from 1

2 to 1. Above that,
y(t) descends from2 to 1. Below theS-curve,y(t) drops from−1 to−∞.

Can you see3 regions in the picture ?Dropin curves abovey = 1 and S-curves
sandwiched between0 and 1 and dropoff curves belowy = 0.

Solution The three curves are drawn in Figure 3.3 on page 157. The uppercurves and
middle curves approachy∞ = a/b. The lowest curves reachy = −∞ in finite time:
blow-up.

9 Graphf(y) = y − y2 to see the unstable steady stateY = 0 and the stableY = 1.
Then graphf(y) = y − y2 − 2/9 with harvestingh = 2/9. What are the steady
statesY1 andY2 ? The3 regions in Problem 8 now haveZ-curves abovey = 2/3,
S-curves sandwiched between1/3 and2/3, dropoff curves belowy = 1/3.

Solution The steady states are the points whereY − Y 2 = 0 (logistic) andY − Y 2 −
2
9 = 0 (harvesting). That second equation factors into(Y − 1

3 )(Y − 2
3 ) to show the

steady states13 and 2
3 .
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10 What equation produces anS-curve climbing toy∞ = K from y−∞ = L?

Solution We can choosey ′ = ay − by2 − h with steady statesK andL. Then
aK − bK2 − h = 0 andaL − bL2 − h = 0. If we divide byh, these two linear
equations give

a

h
=

K + L

KL
=

1

K
+

1

L
and

b

h
=

1

KL

Check :
a

h
K − b

h
K2 − 1 =

K

L
− K

L
= 0 and

a

h
L− b

h
L2 − 1 =

L

K
− L

K
= 0

11 y ′ = y − y2 − 1
4 = −(y − 1

2 )
2 showscritical harvestingwith a double steady state

at y = Y = 1
2 . The layer ofS-curves shrinks to that single line. Sketch a dropin

curve that starts abovey(0) = 1
2 and a dropoff curve that starts belowy(0) = 1

2 .

Solution The solution toy ′ = −(y− 1
2 )

2 comes from integrating−dy/(y− 1
2 )

2 = dt

to get1/(y − 1
2 ) = t + C. Theny(t) = 1

2
+ 1

t+C
. If y(0) > 1

2 thenC > 0 and

this curve approachesy(∞) = 1
2 ; it is a hyperbola coming down toward that horizontal

line. If y(0) < 1
2 thenC is negative and the above solutiony = 1

2 + 1
t+C blows up

(or blows down! sincey is negative) at the positive timet = −C. This is a dropoff
curve below the horizontal liney = 1

2 . (If y(0) = 1
2 the equation isdy/dt = 0 and the

solution stays at that steady state.)

12 Solve the equationy ′ = −(y − 1
2 )

2 by substitutingv = y − 1
2 and solvingv ′ = −v2.

Solution This approach uses the solutions we know todv/dt = −v2. Those solutions
arev(t) = 1

t+C . Thenv = y − 1
2 gives the samey = 1

2 + 1
t+C as in Problem 11.

13 With overharvesting, every curvey(t) drops to−∞. There are no steady states.
SolveY − Y 2 − h = 0 (quadratic formula) to find only complex roots if4h > 1.

The solutions forh = 5
4 arey(t) = 1

2 − tan(t+ C). Sketch that dropoff ifC = 0.
Animal populations don’t normally collapse like this from overharvesting.

Solution Overharvesting isy ′ = y− y2−h with h larger than14 (Problems 11 and 12
hadh = 1

4 and critical harvesting). The fixed points come fromY − Y 2 − h = 0. The
quadratic formula givesY = 1

2 (1 ±
√
1− 4h). These roots are complex forh > 1

4 :
No fixed points.

For h = 5
4 the equation isy ′ = y − y2 − 5

4 = −(y − 1
2 )

2 − 1. Thenv = y − 1
2

hasv ′ = −v2 − 1. Integratingdv/(1 + v2) = −dt gives tan−1 v = −t − C or
v = − tan(t+ C). y = v + 1

2 = 1
2 − tan(t+ C). The graph of− tan t starts at zero

and drops to−∞ at t = π/2.

14 With two partial fractions , this is my preferred way to findA =
1

r − s
, B =

1

s− r

PF2
1

(y − r)(y − s)
=

1

(y − r)(r − s)
+

1

(y − s)(s − r)

Check that equation : The common denominator on the right is(y − r)(y − s)(r − s).
The numerator should cancel ther − s when you combine the two fractions.
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Separate
1

y2 − 1
and

1

y2 − y
into two fractions

A

y − r
+

B

y − s
.

Note When y approachesr, the left side ofPF2 has a blowup factor1/(y − r).
The other factor1/(y − s) correctly approachesA = 1/(r − s). So the right side
of PF2needs the same blowup aty = r. The first termA/(y − r) fits the bill.

Solution
1

y2 − 1
=

1

(y − 1)(y + 1)
=

A

y − 1
+

B

y + 1
=

1/2

y − 1
− 1/2

y + 1

The constants areA =
1

r − s
=

1

1− (−1)
= −1

2
= −B

1

y2 − y
=

1

(y − 1)y
=

A

y − 1
+

B

y
=

1

y − 1
− 1

y
, A =

1

r − s
=

1

1− 0
= −B

15 Thethreshold equation is the logistic equation backward in time :

−dy

dt
= ay − by2 is the same as

dy

dt
= −ay + by2.

Now Y = 0 is the stable steady state.Y = a/b is the unstable state (why ?).
If y(0) is below the thresholda/b then y(t) → 0 and the species will die out.

Graphy(t) with y(0) < a/b (reverseS-curve). Then graphy(t) with y(0) > a/b.

Solution The steady states ofdy/dt = −ay + by2 come from−aY + bY 2 = 0 so
againY = 0 or Y = a/b. The stability is controlled by thesign ofdf/dy at y = Y :

f = −ay + by2 tells how y grows
df

dy
= −a+ 2by tells how∆y grows

Y = 0 has
df

dy
= −a (STABLE) Y =

a

b
has

df

dy
= −a+2b

(a
b

)
= a (UNSTABLE)

TheS-curves go downward fromY = a/b toward the lineY = 0 (never touch).

16 (Cubic nonlinearity) The equationy ′ = y(1 − y)(2 − y) hasthree steady states:
Y = 0, 1, 2. By computing the derivativedf/dy at y = 0, 1, 2, decide whether
each of these states is stable or unstable.

Draw thestability linefor this equation, to showy(t) leaving the unstableY ’s.

Sketch a graph that showsy(t) starting fromy(0) = 1
2 and 3

2 and 5
2 .

Solution y ′ = f(y) = y(1−y)(2−y) = 2y−3y2+y3 has slopedfdy = 2−6y+3y2.

Y = 0 has df
dy = 2 (unstable)

S−curves go up fromY = 0 toward Y = 1
Y = 1 has df

dy = −1 (stable)
S−curves fromY = 2 go down towardY = 1

Y = 2 has df
dy = 2 (unstable)

< | > | < | >
0 1 2

Y
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17 (a) Find the steady states of theGompertz equationdy/dt = y(1− ln y).

Solution (a) Y (1 − lnY ) = 0 at steady statesY = 0 andY = e.

(b) Show thatz = ln y satisfies the linear equationdz/dt = 1− z.

Solution (b) z = ln y hasdz
dt = 1

y
dy
dt = y(1− ln y)/y = 1− ln y = 1− z.

(c) The solutionz(t) = 1 + e−t(z(0)− 1) gives what formula fory(t) from y(0)?

Solution (c) z ′ = 1/z gives thatz(t). Then sety(t) = 1/z(t):

y(t) =
[
1 + e−t(z(0)− 1)

]−1
=

[
1 + e−t

(
1

y(0)
− 1

)]−1

.

18 Decide stability or instability for the steady states of

(a) dy/dt = 2(1− y)(1− ey) (b) dy/dt = (1− y2)(4− y2)

Solution (a) f(y) = 2(1− y)(1− ey) = 0 atY = 1 andY = 0
df
dy = −2ey(1− y)− 2(1− eY )

At Y = 1 df
dy = −2(1− e) > 0 (UNSTABLE) At Y = 0 df

dy = −2 (STABLE)

(b) f(y) = (1 − y2)(4 − y2) = 0 atY = 1,−1, 2,−2 df
dy = −10y + 4y3

Y = 1 gives df
dy = −6 (STABLE) Y = −1 gives df

dy = 6 (UNSTABLE)

Y = 2 gives df
dy = 12 (UNSTABLE) Y = −2 gives df

dy = −12 (STABLE)

19 Stefan’s Law of Radiation isdy/dt = K(M4 − y4). It is unusual to see fourth powers.
Find all real steady states and their stability. Starting fromy(0) = M/2, sketch a graph
of y(t).

Solution f(Y ) = K(M4 − Y 4) equals0 atY = M andY = −M (alsoY = ±iM ).
df
dy = −4KY 3 = −4KM3(Y = M is STABLE) df

dy = 4KM3(Y = −M is UNSTABLE)

The graph starting aty(0) = M/2 must go upwards to approachy(∞) = M .
20 dy/dt = ay − y3 has how many steady statesY for a < 0 and thena > 0?

Graph those valuesY (a) to see apitchfork bifurcation—new steady states suddenly
appear asa passes zero. The graph ofY (a) looks like a pitchfork.

Solution f(Y ) = aY − Y 3 = Y (a− Y 2) has 3 steady statesY = 0,
√
a,−√

a.
df
dy = a− 3y2 equalsa atY = 0, df

dy = −2a atY =
√
a andY = −√

a.

ThenY = 0 is UNSTABLE andY = ±√
a are STABLE.

21 (Recommended) The equationdy/dt = sin y has infinitely many steady states.
What are they and which ones are stable ? Draw the stability line to show whether
y(t) increases or decreases wheny(0) is between two of the steady states.

Solution f(Y ) = sinY is zero at every steady stateY = nπ (0, π,−π, 2π,−2π, . . .)
df
dy = cosY = 1 (UNSTABLE for Y = 0, 2π,−2π, 4π, . . .)

= cosY = −1 (STABLE for Y = π,−π, 3π,−3π, . . .)

Stability line < | > | < | > | < | >
−2π −π 0 π 2π
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22 Change Problem 21 tody/dt = (sin y)2. The steady states are the same, but now the
derivative off(y) = (sin y)2 is zero at all those states (becausesin y is zero). What
will the solution actually do ify(0) is between two steady states ?

Solution f(y) = (sin y)2 hasδf
δy = 2 sin y cos y = sin 2y.

Now df
dy = 0 at ALL THE STEADY STATESY = nπ.

Since dy
dt = (sin y)2 is always positive, the solutiony(t) will always increase toward

the next larger steady state.

We have an infinite stack ofS−curves.

23 (Research project) Find actual data on the US population in the years 1950, 1980, and
2010. What values ofa, b, d in the solution formula (7) will fit these values ? Is the
formula accurate at 2000, and what population does it predict for 2020 and 2100 ?

You could resett = 0 to the year 1950 and rescale time so thatt = 3 is 1980.

Solution Resetting time givesT = c(t− 1950). Rescaling givesc(1980− 1950) = 3
soc = 1

10 . Thena, b, d depend on your data.

The graphs fromt = 1950 to 1980 will show T = 1
10 (t− 1950) from T = 0 to 3.

24 If dy/dt = f(y), what is the limity(∞) starting from each pointy(0)?

Solution
dy

dt
=

{
y for y ≤ 1 has fixed pointsY = 0 and 2
2− y for y ≥ 1

Slopedf
dy = 1 atY = 0 (UNSTABLE). Slopedf

dy = −1 atY = 2 (STABLE),y(∞) = 2.

1

0 2
y

f(y)

0 2 4
y

f(y)

Fixed pointsY = 0,2,4. Slopesdfdy = −1, 1,−1.

0, 2, 4 = STABLE, UNSTABLE, STABLE y(∞) = 0 if y(0) < 2 andy(∞) = 4 if
y(0) > 2.

25 (a) Draw a functionf(y) so thaty(t) approachesy(∞) = 3 from everyy(0).

Solution The right sidef(y) must be zero only atY = 3 which is STABLE.

Example:dydt = f(y) = 3 − y has solutionsy = 3 + Ce−t.

(b) Drawf(y) so thaty(∞) = 4 if y(0) > 0 andy(∞) = −2 if y(0) < 0.

Solution This requiresY = 4,−2 to be stable andY = 0 to be unstable.

Example:dydt = f(y) = −y(y − 4)(y + 2) Notice df
dy = 8 at Y = 0.

26 Which exponentsn in dy/dt = yn produce blowupy(T ) = ∞ in a finite time ?
You could separate the equation intody/yn = dt and integrate fromy(0) = 1.
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Solution
∫

dy

yn
=

∫
dt gives

y1−n

1− n
= t + C. The right side is zero at a finite time

t = −C. Theny blows up at that timeif n > 1.

If n = 1 the integrals giveln y = t+ C andy = et+C : NO BLOWUP in finite time.
27 Find the steady states ofdy/dt = y2− y4 and decide whether they are stable, unstable,

or one-sided stable. Draw a stability line to show the final valuey(∞) from each initial
valuey(0).

Solution f(y) = y2 − y4 = 0 atY = 0, 1,−1

0 at Y = 0 (Double root off )
df
dy = 2y − 4y3 = −2 at Y = 1 (STABLE)

2 at Y = −1 (UNSTABLE)

SinceY = −1 is unstable,y(t) must go towardY = 0 if −1 < y(0) < 0.

SinceY = 1 is stable,y(t) must go towardY = 1 if 0 < y(0) < 1.

< | > | > | < >
−1 0 1

Y

28 For an autonomous equationy ′ = f(y), why is it impossible fory(t) to be increasing
at one timet1 and decreasing at another timet2 ?

Solution Reason: The stability line shows a movement ofy in one direction, away
from one (unstable) steady stateY and toward another (stable) steady state. “One
direction” means thaty(t) is steadily increasing or steadily decreasing.

Problem Set 1.8, page 69

1 Finally we can solve the exampledy/dt = y2 in Section 1.1 of this book.

Start from y(0) = 1. Then

y∫

1

dy

y2
=

t∫

0

dt. Notice the limits ony andt. Findy(t).

Solution With those limits, integration gives− 1
y + 1 = t. Then 1

y = 1 − t and

y(t) = 1
1−t

.

2 Start the same equationdy/dt = y2 from any valuey(0). At what timet does the
solution blow up ? For which starting valuesy(0) does it never blow up ?

Solution −1

y
+

1

y(0)
= t gives

1

y
=

1

y(0)
− t and y =

y(0)

1 − ty(0)
.

If y(0) is negative, then1− ty(0) never touches zero fort > 0 : No blowup.
3 Solvedy/dt = a(t)y as a separable equation starting fromy(0) = 1, by choosing

f(y) = 1/y. This equation gave the growth factorG(0, t) in Section 1.6.

Solution y∫

y(0)

dy

y
=

t∫

0

a(t)dt gives ln y(t)− ln y(0) =

t∫

0

a(t)dt
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y(t) = y(0) exp




t∫

0

a(t)dt


 = G(0, t) y(0)

4 Solve these separable equations starting fromy(0) = 0 :

(a)
dy

dt
= ty (b)

dy

dt
= tm yn

Solution (a)

y∫

y(0)

dy

y
=

t∫

0

t dt and ln y−ln y(0) = t2/2 : Theny(t) = y(0) exp(t2/2).

(b) dy
dt = tmyn has

∫
dy

yn
=

∫
tm dt andy1−n

1−n = tm+1

m+1 . Theny =
(

1−n
m+1 t

m+1
)1/(1−n)

for n 6= 1.

5 Solve
dy

dt
= a(t)y2 =

a(t)

1/y2
as a separable equation starting fromy(0) = 1.

Solution dy

dt
= a(t)y2

y∫

1

du

u2
=

t∫

0

a(x) dx (u and x are just integration variables)

−1

y
+ 1 =

t∫

0

a(x) dx gives y =
1

1−
t∫

0

a(x) dx

6 The equation
dy

dt
= y + t is not separable or exact. But it is linear andy = .

Solution We solve the equation by taking advantage of its linearity:

Givena = 1, the growth factor iset. The source term ist. Therefore using equation
(14) gives:

y(t) = ety(0) +

t∫

0

et−ss ds = ety(0)− t+ et − 1.

Check :dy/dt = ety(0)− 1 + et does equaly + t.

7 The equation
dy

dt
=

y

t
has the solutiony = At for every constantA. Find this solution

by separatingf = 1/y from g = 1/t. Then integratedy/y = dt/t. Where does the
constantA come from ?

Solution We use separation of variables to find the constantA
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dy

y
=

dt

t
t∫

y(1)

du

u
=

t∫

1

dx

x

ln(y)− ln(y(1)) = ln t

y

y(1)
= t

y = y(1) t

Therefore we find that the constantA is equal toy(1), the initial value.

8 For which numberA is
dy

dt
=

ct− ay

At+ by
an exact equation ? For thisA, solve the

equation by finding a suitable functionF (y, t) + C(t).

Solution f(y, t) = At+ by andg(y, t) = ct− ay

The equation is exact if :∂f∂t = − ∂g
∂y andA = a.

We follow the three solution steps for exact equations.

1 Integratef with respect toy :∫
f(y, t) dy =

∫
(At+ by) dy = Aty +

1

2
by2 = F (y, t)

2 ChooseC(t) so that ∂∂t (F (y, t) + C(t)) = −g(y, t)

∂

∂t
(Aty +

1

2
by2 + C(t)) = Ay + C ′(t) = −ct+ ay

C ′(t) = −ct and C(t) = −1

2
ct2

3 We therefore have that :

dy

dt
=

g(y, t)

f(y, t)
is solved byF (y, t) + C(t) = constant

Aty +
1

2
by2 − 1

2
ct2 = constant

9 Find a functiony(t) different fromy = t that hasdy/dt = y2/t2.

Solution Using separation of variables :

dy/dt = y2/t2

dy/y2 = dt/t2

y∫

y(t0)

du

u2
=

t∫

t0

dx

x2

− 1
y(t) +

1
y(t0)

= − 1
t +

1
t0

t0 = 1 andy(t0) = 2 give− 1
y(t) +

1
2 = − 1

t + 1 andy(t) =
(
1
t − 1

2

)−1
= 2t

2−t
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10 These equations are separable after factoring the right hand sides :

Solve
dy

dt
= ey+t and

dy

dt
= yt+ y + t+ 1.

Solution (a)
dy

dt
= eyet and

y∫

y0

e−ydy =

t∫

t0

etdt

−e−y + e−y0 = et − et0

e−y = e−y0 − et + et0

y = − ln [e−y0 − et + et0 ]

(b) dy/dt = (y + 1)(t+ 1)

y∫

y0

dy

y + 1
=

t∫

t0

(t+ 1) dt

ln(y + 1)− ln(y0 + 1) =
1

2
(t2 − t20) + (t− t0) = G

y + 1 = (y0 + 1) eG

11 These equations are linear and separable : Solve
dy

dt
= (y + 4) cos t and

dy

dt
= yet.

Solution (a)

y∫

y0

dy

y + 4
=

t∫

t0

cos t dt

ln(y + 4)− ln(y0 + 4) = sin t− sin t0

y + 4 = (y0 + 4) exp(sin t− sin t0)

(b)

y∫

y0

dy

y
=

t∫

t0

et dt

ln y − ln y0 = et − et0

y = y0 exp(e
t − et0)

12 Solve these three separable equations starting fromy(0) = 1 :

Solution (a)
dy

dt
= −4ty has

y∫

1

dy

y
=

t∫

0

−4t dt

ln y = −2t2 and y = exp(−2t2)

(b)
dy

dt
= ty3 has

y∫

1

dy

y3
=

t∫

0

t dt and − 1

2y2
+

1

2y20
=

1

2
t2
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1

y2
=

1

y20
− t2

y =

(
1

y20
− t2

)−1/2

= y0
(
1− t2y20

)−1/2

(c) (1 + t)
dy

dt
= 4y has

y∫

1

dy

y
=

t∫

0

4 dt

1 + t

ln y = 4 ln(1 + t)− 4 ln(1) = 4 ln(1 + t)

y = (1 + t)4

Check (1 + t)dydt = 4(1 + t)(1 + t)3 = 4y

Test the exactness condition∂g/∂y = −∂f/∂t and solve Problems 13-14.

13 Test the exactness condition∂g/∂y = −∂f/∂t.

Solution (a) g = −3t2 − 2y2 has ∂g/∂y = −4y

f = 4ty + by2 has − ∂f/∂y = −4y : EXACT

Step 1 :
∫

f dy =

∫ (
4ty + 6y2

)
dy = 2ty2 + 2y3 + C(t)

Step 2 : ∂
∂t

(
2ty2 + 2y3 + C(t)

)
= 2y2 + C ′(t).

This equals−g whenC ′(t) = 3t2 andC(t) = t3.

Step 3 : Solution2ty2 + 2y3 + t3 = constant

Solution (b) g = −1− yety has∂g/∂y = −ytety − ety

f = 2y + tety has−∂f/∂t = −ytety − ety : EXACT

Step 1 :
∫

f dy =

∫ (
2y + tety

)
dy = y2 + ety + C(t) = F (y, t)

Step 2 : ∂
∂t

(
y2 + ety + C(t)

)
= yety + C ′(t) = −g whereC ′(t) = 1

Step 3 :C ′(t) = 1 givesC(t) = t and the solution is

F (y, t) + C(t) = −ytety − ety + t = constant

14 Test the exactness condition∂g/∂y = −∂f/∂t.

Solution (a)g = 4t− y and f = t− 6y have ∂g
∂y = −1 = ∂f

∂t : EXACT

Step 1 :
∫

f dy = ty − 3y2 + C(t)

Step 2 : ∂
∂t

(
ty − 3y2 + C(t)

)
= y + C ′(t) = −g = y − 4t when C(t) = −2t2

Step 3 : Solutionty − 3y2 − 2t2 = constant

Solution (b) g = −3t2−2y2 and f = 4ty+6y2 have ∂g
∂y = −4y = −∂f

∂t : EXACT

Step 1 :
∫

f dy =

∫ (
4ty + 6y2

)
dy = 2ty2 + 2y3 + C(t)
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Step 2 : ∂
∂t

(
2ty2 + 2y3 + C(t)

)
= 2y2 + C ′(t) = −g = 3t2 + 2y2 when C ′ = 3t2

and C = t3

Step 3 : Solution2ty2 + 2y3 + t3 = constant

15 Show that
dy

dt
= − y2

2ty
is exact but the same equation

dy

dt
= − y

2t
is not exact. Solve

both equations. (This problem suggests that many equationsbecome exact when mul-
tiplied by an integrating factor.)

Solution g = −y2 and f = 2ty have ∂g
∂y = −2y = −∂f

∂t : EXACT

g = −y andf = 2t have ∂g
∂y NOT EQUAL TO−∂f

∂t

Solve the second form which is SEPARABLE∫
dy

y
=

∫
−dt

2t
gives ln y = −1

2
ln t+ C

Theny = eCt−1/2 is the same asy = ct−1/2.

The same solution must come from Steps 1, 2, 3 using the exact form.

16 Exactness is really the condition to solve two equations with the same functionH(t, y) :
∂H

∂y
= f(t, y) and

∂H

∂t
= −g(t, y) can be solved if

∂f

∂t
= −∂g

∂y
.

Take thet derivative of∂H/∂y and they derivative of∂H/∂t to show that exactness
is necessary. It is alsosufficientto guarantee that a solutionH will exist.

Solution The point is to see the underlying idea of exactness.

If
∂H

∂y
= f(t, y) then

∂2H

∂t ∂y
=

∂f

∂t

If
∂H

∂t
= −g(t, y) then

∂2H

∂y ∂t
= −∂g

∂y

The cross derivatives ofH are always equal.IF a functionH solves both equations
then ∂f

∂t must equal− ∂g
∂y . So behind every exact equation is a functionH : exactness is

a necessary and also sufficient to findH with ∂H/∂y = f and ∂H/∂t = −g.

17 The linear equation
dy

dt
= aty+ q is not exact or separable. Multiply by the integrating

factore−
∫
at dt and solve the equation starting fromy(0).

Solution This problem just recalls the idea of an integrating factor :

For
dy

dt
= aty + q the factor isP = exp

(
−
∫

at dt

)
= exp

(
−1

2
at2
)

.

ThenP
(

dy
dt − aty

)
agrees with(Py) ′ = P dy

dt +
dP
dt y

So the original equation multiplied byP is d
dt (Py) = Pq.

Integrate both sidesP (t)y(t)− P (0)y(0) =

t∫

0

P (t)q dt. Divide byP (t) to findy(t).
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Second order equationsF (t, y, y ′, y ′′) = 0 involve the second derivativey ′′.
This reduces to a first order equation for y ′ (not y) in two important cases:

I. Wheny is missing inF , sety ′ = v andy ′′ = v ′. ThenF (t, v, v ′) = 0.

II. Whent is missing inF , sety ′′ =
dv

dt
=

dv

dy

dy

dt
= v

dv

dy
. ThenF

(
y, v, v

dv

dy

)
= 0.

See the website forreduction of order when one solutiony(t) is known.

18 (y is missing) Solve these differential equations forv = y ′ with v(0) = 1. Then
solve fory with y(0) = 0.

Solution (a)y ′′ + y ′ = 0. Sety ′ = v. Thenv ′ + v = 0 givesv(t) = Ce−t.

Now solvey ′ = v = Ce−t to find y = −Ce−t + D.

Solution (b) 2ty ′′ − y ′ = 0. Sety ′ = v. Then2tv ′ − v = 0 is solved by∫
dv

v
=

∫
dt

2t
andln v = ln

√
t+ C andv = c

√
t. Now solvey ′ = v = c

√
t to find

y = c1t
3/2 + c2.

19 Bothy andt are missing iny ′′ = (y ′)2. Setv = y ′ and go two ways :

I. Solve
dv

dt
= v2 to findv =

1

1− t
as in Section 1.1.

Then solve
dy

dt
= v =

1

1− t
to findy = − (1− t)−2

2
+

1

2
with y(0) = 0.

II. Solvev
dv

dy
= v2 or

dv

dy
= v to findv = ey .

Then
dy

dt
= v(y) = ey gives

∫
e−y dy =

∫
dt satisfyingv(0) = 1, y(0) = 0

and−e−y = t− 1 : not the same solution as part I (??)

20 An autonomous equationy ′ = f(y) has no terms that containt (t is missing).

Explain why every autonomous equation is separable. A non-autonomous equation
could be separable or not. For a linear equation we usually say LTI ( linear time-
invariant ) when it is autonomous: coefficients are constant, not varying with t.

Solution Every autonomous equation separates into
∫

dy

f(y)
=

∫
dt.

Linear equations can bedydt = a(t)y : Non-autonomous

LTI equations aredydt = ay (linear and alsoa is time-invariant⇒ autonomous).

21 my ′′ + ky = 0 is a highly important LTI equation. Two solutions arecosωt and
sinωt whenω2 = k/m. Solve differently by reducing to a first order equation for
y ′ = dy/dt = v with y ′′ = v dv/dy as above :

mv
dv

dy
+ ky = 0 integrates to

1

2
mv2 +

1

2
ky2 = constantE.
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For a mass on a spring, kinetic energy1
2mv2 plus potential energy12ky

2 is a con-
stant energyE. What isE wheny = cosωt ? What integral solves the separable
m(y ′)2 = 2E − ky2 ? I would not solve the linear oscillation equation this way.

Solution With y ′ = v andy ′′ = v dv
dy , the equationmy ′′ + ky = 0 becomes

mv dv
dy + ky = 0. This isnonlinearbutseparable. Integratemv dv = −ky dy to get

1

2
mv2 +

1

2
ky2 = constantE [Conservation of Energy].

If y = cos(ωt) thenv = y ′ = −ω sin(ωt) andE is 1
2m cos2(ωt) + 1

2Kω2 sin2(ωt).

The separable equationm(y ′)2 = 2E−ky2 could be solved by

(
m

2E −Ky2

)1/2

dy =

dt. The integral could lead tocos−1 y = ωt andy = cosωt.

22 my ′′ + k sin y = 0 is thenonlinearoscillation equation : not so simple. Reduce to a
first order equation as in Problem21 :

mv
dv

dy
+ k sin y = 0 integrates to

1

2
mv2 − k cos y = constantE.

With v = dy/dt what impossible integral is needed for this first order separable equa-
tion ? Actually that integral gives the period of a nonlinearpendulum—this
integral is extremely important and well studied even if impossible.

Solution Take square roots in12m
(

dy
dt

)2
= K cos y + E.

Then separate into

[
m/2

K cos y + E

]1/2
dy = dt.

An unpleasant integral but important for nonlinear oscillation. Chapter 1 is ending
with an example that shows the reality of nonlinear differential equations : Numerical
solutions possible, elementary formulas are often impossible.


